Upload 11 files
Browse files- README.md +200 -0
- config.json +26 -0
- generation_config.json +6 -0
- model-00001-of-00003.safetensors +3 -0
- model-00002-of-00003.safetensors +3 -0
- model-00003-of-00003.safetensors +3 -0
- model.safetensors.index.json +371 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +11 -0
- tokenizer.json +0 -0
- tokenizer_config.json +6 -0
README.md
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- ko
|
4 |
+
tags:
|
5 |
+
- pytorch
|
6 |
+
- causal-lm
|
7 |
+
license: apache-2.0
|
8 |
+
|
9 |
+
---
|
10 |
+
# Polyglot-Ko-1.3B
|
11 |
+
|
12 |
+
## Model Description
|
13 |
+
Polyglot-Ko is a series of large-scale Korean autoregressive language models made by the EleutherAI polyglot team.
|
14 |
+
|
15 |
+
| Hyperparameter | Value |
|
16 |
+
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------|
|
17 |
+
| \\(n_{parameters}\\) | 1,331,810,304 |
|
18 |
+
| \\(n_{layers}\\) | 24 |
|
19 |
+
| \\(d_{model}\\) | 2,048 |
|
20 |
+
| \\(d_{ff}\\) | 8,192 |
|
21 |
+
| \\(n_{heads}\\) | 16 |
|
22 |
+
| \\(d_{head}\\) | 128 |
|
23 |
+
| \\(n_{ctx}\\) | 2,048 |
|
24 |
+
| \\(n_{vocab}\\) | 30,003 / 30,080 |
|
25 |
+
| Positional Encoding | [Rotary Position Embedding (RoPE)](https://arxiv.org/abs/2104.09864) |
|
26 |
+
| RoPE Dimensions | [64](https://github.com/kingoflolz/mesh-transformer-jax/blob/f2aa66e0925de6593dcbb70e72399b97b4130482/mesh_transformer/layers.py#L223) |
|
27 |
+
|
28 |
+
The model consists of 24 transformer layers with a model dimension of 2048, and a feedforward dimension of 8192. The model
|
29 |
+
dimension is split into 16 heads, each with a dimension of 128. Rotary Position Embedding (RoPE) is applied to 64
|
30 |
+
dimensions of each head. The model is trained with a tokenization vocabulary of 30003.
|
31 |
+
|
32 |
+
## Training data
|
33 |
+
|
34 |
+
Polyglot-Ko-1.3B was trained on 863 GB of Korean language data (1.2TB before processing), a large-scale dataset curated by [TUNiB](https://tunib.ai/). The data collection process has abided by South Korean laws. This dataset was collected for the purpose of training Polyglot-Ko models, so it will not be released for public use.
|
35 |
+
|
36 |
+
| Source |Size (GB) | Link |
|
37 |
+
|-------------------------------------|---------|------------------------------------------|
|
38 |
+
| Korean blog posts | 682.3 | - |
|
39 |
+
| Korean news dataset | 87.0 | - |
|
40 |
+
| Modu corpus | 26.4 |corpus.korean.go.kr |
|
41 |
+
| Korean patent dataset | 19.0 | - |
|
42 |
+
| Korean Q & A dataset | 18.1 | - |
|
43 |
+
| KcBert dataset | 12.7 | github.com/Beomi/KcBERT |
|
44 |
+
| Korean fiction dataset | 6.1 | - |
|
45 |
+
| Korean online comments | 4.2 | - |
|
46 |
+
| Korean wikipedia | 1.4 | ko.wikipedia.org |
|
47 |
+
| Clova call | < 1.0 | github.com/clovaai/ClovaCall |
|
48 |
+
| Naver sentiment movie corpus | < 1.0 | github.com/e9t/nsmc |
|
49 |
+
| Korean hate speech dataset | < 1.0 | - |
|
50 |
+
| Open subtitles | < 1.0 | opus.nlpl.eu/OpenSubtitles.php |
|
51 |
+
| AIHub various tasks datasets | < 1.0 |aihub.or.kr |
|
52 |
+
| Standard Korean language dictionary | < 1.0 | stdict.korean.go.kr/main/main.do |
|
53 |
+
|
54 |
+
Furthermore, in order to avoid the model memorizing and generating personally identifiable information (PII) in the training data, we masked out the following sensitive information in the pre-processing stage:
|
55 |
+
|
56 |
+
* `<|acc|>` : bank account number
|
57 |
+
* `<|rrn|>` : resident registration number
|
58 |
+
* `<|tell|>` : phone number
|
59 |
+
|
60 |
+
## Training procedure
|
61 |
+
Polyglot-Ko-1.3B was trained on 213 billion tokens over 102,000 steps on 256 A100 GPUs with the [GPT-NeoX framework](https://github.com/EleutherAI/gpt-neox). It was trained as an autoregressive language model, using cross-entropy loss to maximize the likelihood of predicting the next token.
|
62 |
+
|
63 |
+
## How to use
|
64 |
+
|
65 |
+
This model can be easily loaded using the `AutoModelForCausalLM` class:
|
66 |
+
|
67 |
+
```python
|
68 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
69 |
+
|
70 |
+
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/polyglot-ko-1.3b")
|
71 |
+
model = AutoModelForCausalLM.from_pretrained("EleutherAI/polyglot-ko-1.3b")
|
72 |
+
```
|
73 |
+
|
74 |
+
## Evaluation results
|
75 |
+
|
76 |
+
We evaluate Polyglot-Ko-1.3B on [KOBEST dataset](https://arxiv.org/abs/2204.04541), a benchmark with 5 downstream tasks, against comparable models such as skt/ko-gpt-trinity-1.2B-v0.5, kakaobrain/kogpt and facebook/xglm-7.5B, using the prompts provided in the paper.
|
77 |
+
|
78 |
+
The following tables show the results when the number of few-shot examples differ. You can reproduce these results using the [polyglot branch of lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/polyglot) and the following scripts. For a fair comparison, all models were run under the same conditions and using the same prompts. In the tables, `n` refers to the number of few-shot examples.
|
79 |
+
|
80 |
+
In case of WiC dataset, all models show random performance.
|
81 |
+
|
82 |
+
```console
|
83 |
+
python main.py \
|
84 |
+
--model gpt2 \
|
85 |
+
--model_args pretrained='EleutherAI/polyglot-ko-1.3b' \
|
86 |
+
--tasks kobest_copa,kobest_hellaswag,kobest_boolq,kobest_sentineg,kobest_wic \
|
87 |
+
--num_fewshot $YOUR_NUM_FEWSHOT \
|
88 |
+
--batch_size $YOUR_BATCH_SIZE \
|
89 |
+
--device $YOUR_DEVICE \
|
90 |
+
--output_path $/path/to/output/
|
91 |
+
```
|
92 |
+
|
93 |
+
### COPA (F1)
|
94 |
+
|
95 |
+
| Model | params | 0-shot | 5-shot | 10-shot | 50-shot |
|
96 |
+
|----------------------------------------------------------------------------------------------|--------|--------|--------|---------|---------|
|
97 |
+
| [skt/ko-gpt-trinity-1.2B-v0.5](https://huggingface.co/skt/ko-gpt-trinity-1.2B-v0.5) | 1.2B | 0.6696 | 0.6477 | 0.6419 | 0.6514 |
|
98 |
+
| [kakaobrain/kogpt](https://huggingface.co/kakaobrain/kogpt) | 6.0B | 0.7345 | 0.7287 | 0.7277 | 0.7479 |
|
99 |
+
| [facebook/xglm-7.5B](https://huggingface.co/facebook/xglm-7.5B) | 7.5B | 0.6723 | 0.6731 | 0.6769 | 0.7119 |
|
100 |
+
| **[EleutherAI/polyglot-ko-1.3b](https://huggingface.co/EleutherAI/polyglot-ko-1.3b) (this)** | **1.3B** | **0.7196** | **0.7193** | **0.7204** | **0.7206** |
|
101 |
+
| [EleutherAI/polyglot-ko-3.8b](https://huggingface.co/EleutherAI/polyglot-ko-3.8b) | 3.8B | 0.7595 | 0.7608 | 0.7638 | 0.7788 |
|
102 |
+
| [EleutherAI/polyglot-ko-5.8b](https://huggingface.co/EleutherAI/polyglot-ko-5.8b) | 5.8B | 0.7745 | 0.7676 | 0.7775 | 0.7887 |
|
103 |
+
| [EleutherAI/polyglot-ko-12.8b](https://huggingface.co/EleutherAI/polyglot-ko-12.8b) | 12.8B | 0.7937 | 0.8108 | 0.8037 | 0.8369 |
|
104 |
+
|
105 |
+
<img src="https://github.com/EleutherAI/polyglot/assets/19511788/d5b49364-aed5-4467-bae2-5a322c8e2ceb" width="800px">
|
106 |
+
|
107 |
+
### HellaSwag (F1)
|
108 |
+
|
109 |
+
| Model | params | 0-shot | 5-shot | 10-shot | 50-shot |
|
110 |
+
|----------------------------------------------------------------------------------------------|--------|--------|--------|---------|---------|
|
111 |
+
| [skt/ko-gpt-trinity-1.2B-v0.5](https://huggingface.co/skt/ko-gpt-trinity-1.2B-v0.5) | 1.2B | 0.5243 | 0.5272 | 0.5166 | 0.5352 |
|
112 |
+
| [kakaobrain/kogpt](https://huggingface.co/kakaobrain/kogpt) | 6.0B | 0.5590 | 0.5833 | 0.5828 | 0.5907 |
|
113 |
+
| [facebook/xglm-7.5B](https://huggingface.co/facebook/xglm-7.5B) | 7.5B | 0.5665 | 0.5689 | 0.5565 | 0.5622 |
|
114 |
+
| **[EleutherAI/polyglot-ko-1.3b](https://huggingface.co/EleutherAI/polyglot-ko-1.3b) (this)** | **1.3B** | **0.5247** | **0.5260** | **0.5278** | **0.5427** |
|
115 |
+
| [EleutherAI/polyglot-ko-3.8b](https://huggingface.co/EleutherAI/polyglot-ko-3.8b) | 3.8B | 0.5707 | 0.5830 | 0.5670 | 0.5787 |
|
116 |
+
| [EleutherAI/polyglot-ko-5.8b](https://huggingface.co/EleutherAI/polyglot-ko-5.8b) | 5.8B | 0.5976 | 0.5998 | 0.5979 | 0.6208 |
|
117 |
+
| [EleutherAI/polyglot-ko-12.8b](https://huggingface.co/EleutherAI/polyglot-ko-12.8b) | 12.8B | 0.5954 | 0.6306 | 0.6098 | 0.6118 |
|
118 |
+
|
119 |
+
<img src="https://github.com/EleutherAI/polyglot/assets/19511788/5acb60ac-161a-4ab3-a296-db4442e08b7f" width="800px">
|
120 |
+
|
121 |
+
### BoolQ (F1)
|
122 |
+
|
123 |
+
| Model | params | 0-shot | 5-shot | 10-shot | 50-shot |
|
124 |
+
|----------------------------------------------------------------------------------------------|--------|--------|--------|---------|---------|
|
125 |
+
| [skt/ko-gpt-trinity-1.2B-v0.5](https://huggingface.co/skt/ko-gpt-trinity-1.2B-v0.5) | 1.2B | 0.3356 | 0.4014 | 0.3640 | 0.3560 |
|
126 |
+
| [kakaobrain/kogpt](https://huggingface.co/kakaobrain/kogpt) | 6.0B | 0.4514 | 0.5981 | 0.5499 | 0.5202 |
|
127 |
+
| [facebook/xglm-7.5B](https://huggingface.co/facebook/xglm-7.5B) | 7.5B | 0.4464 | 0.3324 | 0.3324 | 0.3324 |
|
128 |
+
| **[EleutherAI/polyglot-ko-1.3b](https://huggingface.co/EleutherAI/polyglot-ko-1.3b) (this)** | **1.3B** | **0.3552** | **0.4751** | **0.4109** | **0.4038** |
|
129 |
+
| [EleutherAI/polyglot-ko-3.8b](https://huggingface.co/EleutherAI/polyglot-ko-3.8b) | 3.8B | 0.4320 | 0.5263 | 0.4930 | 0.4038 |
|
130 |
+
| [EleutherAI/polyglot-ko-5.8b](https://huggingface.co/EleutherAI/polyglot-ko-5.8b) | 5.8B | 0.4356 | 0.5698 | 0.5187 | 0.5236 |
|
131 |
+
| [EleutherAI/polyglot-ko-12.8b](https://huggingface.co/EleutherAI/polyglot-ko-12.8b) | 12.8B | 0.4818 | 0.6041 | 0.6289 | 0.6448 |
|
132 |
+
|
133 |
+
<img src="https://github.com/EleutherAI/polyglot/assets/19511788/b74c23c0-01f3-4b68-9e10-a48e9aa052ab" width="800px">
|
134 |
+
|
135 |
+
### SentiNeg (F1)
|
136 |
+
|
137 |
+
| Model | params | 0-shot | 5-shot | 10-shot | 50-shot |
|
138 |
+
|----------------------------------------------------------------------------------------------|--------|--------|--------|---------|---------|
|
139 |
+
| [skt/ko-gpt-trinity-1.2B-v0.5](https://huggingface.co/skt/ko-gpt-trinity-1.2B-v0.5) | 1.2B | 0.6065 | 0.6878 | 0.7280 | 0.8413 |
|
140 |
+
| [kakaobrain/kogpt](https://huggingface.co/kakaobrain/kogpt) | 6.0B | 0.3747 | 0.8942 | 0.9294 | 0.9698 |
|
141 |
+
| [facebook/xglm-7.5B](https://huggingface.co/facebook/xglm-7.5B) | 7.5B | 0.3578 | 0.4471 | 0.3964 | 0.5271 |
|
142 |
+
| **[EleutherAI/polyglot-ko-1.3b](https://huggingface.co/EleutherAI/polyglot-ko-1.3b) (this)** | **1.3B** | **0.6790** | **0.6257** | **0.5514** | **0.7851** |
|
143 |
+
| [EleutherAI/polyglot-ko-3.8b](https://huggingface.co/EleutherAI/polyglot-ko-3.8b) | 3.8B | 0.4858 | 0.7950 | 0.7320 | 0.7851 |
|
144 |
+
| [EleutherAI/polyglot-ko-5.8b](https://huggingface.co/EleutherAI/polyglot-ko-5.8b) | 5.8B | 0.3394 | 0.8841 | 0.8808 | 0.9521 |
|
145 |
+
| [EleutherAI/polyglot-ko-12.8b](https://huggingface.co/EleutherAI/polyglot-ko-12.8b) | 12.8B | 0.9117 | 0.9015 | 0.9345 | 0.9723 |
|
146 |
+
|
147 |
+
<img src="https://github.com/EleutherAI/polyglot/assets/19511788/95b56b19-d349-4b70-9ff9-94a5560f89ee" width="800px">
|
148 |
+
|
149 |
+
### WiC (F1)
|
150 |
+
|
151 |
+
| Model | params | 0-shot | 5-shot | 10-shot | 50-shot |
|
152 |
+
|----------------------------------------------------------------------------------------------|--------|--------|--------|---------|---------|
|
153 |
+
| [skt/ko-gpt-trinity-1.2B-v0.5](https://huggingface.co/skt/ko-gpt-trinity-1.2B-v0.5) | 1.2B | 0.3290 | 0.4313 | 0.4001 | 0.3621 |
|
154 |
+
| [kakaobrain/kogpt](https://huggingface.co/kakaobrain/kogpt) | 6.0B | 0.3526 | 0.4775 | 0.4358 | 0.4061 |
|
155 |
+
| [facebook/xglm-7.5B](https://huggingface.co/facebook/xglm-7.5B) | 7.5B | 0.3280 | 0.4903 | 0.4945 | 0.3656 |
|
156 |
+
| **[EleutherAI/polyglot-ko-1.3b](https://huggingface.co/EleutherAI/polyglot-ko-1.3b) (this)** | **1.3B** | **0.3297** | **0.4850** | **0.465** | **0.3290** |
|
157 |
+
| [EleutherAI/polyglot-ko-3.8b](https://huggingface.co/EleutherAI/polyglot-ko-3.8b) | 3.8B | 0.3390 | 0.4944 | 0.4203 | 0.3835 |
|
158 |
+
| [EleutherAI/polyglot-ko-5.8b](https://huggingface.co/EleutherAI/polyglot-ko-5.8b) | 5.8B | 0.3913 | 0.4688 | 0.4189 | 0.3910 |
|
159 |
+
| [EleutherAI/polyglot-ko-12.8b](https://huggingface.co/EleutherAI/polyglot-ko-12.8b) | 12.8B | 0.3985 | 0.3683 | 0.3307 | 0.3273 |
|
160 |
+
|
161 |
+
<img src="https://github.com/EleutherAI/polyglot/assets/19511788/4de4a4c3-d7ac-4e04-8b0c-0d533fe88294" width="800px">
|
162 |
+
|
163 |
+
## Limitations and Biases
|
164 |
+
|
165 |
+
Polyglot-Ko has been trained to optimize next token prediction. Language models such as this are often used for a wide variety of tasks and it is important to be aware of possible unexpected outcomes. For instance, Polyglot-Ko will not always return the most factual or accurate response but the most statistically likely one. In addition, Polyglot may produce socially unacceptable or offensive content. We recommend having a human curator or other filtering mechanism to censor sensitive content.
|
166 |
+
|
167 |
+
## Citation and Related Information
|
168 |
+
### BibTeX entry
|
169 |
+
If you find our work useful, please consider citing:
|
170 |
+
```bibtex
|
171 |
+
@misc{ko2023technical,
|
172 |
+
title={A Technical Report for Polyglot-Ko: Open-Source Large-Scale Korean Language Models},
|
173 |
+
author={Hyunwoong Ko and Kichang Yang and Minho Ryu and Taekyoon Choi and Seungmu Yang and jiwung Hyun and Sungho Park},
|
174 |
+
year={2023},
|
175 |
+
eprint={2306.02254},
|
176 |
+
archivePrefix={arXiv},
|
177 |
+
primaryClass={cs.CL}
|
178 |
+
}
|
179 |
+
```
|
180 |
+
|
181 |
+
### Licensing
|
182 |
+
All our models are licensed under the terms of the Apache License 2.0.
|
183 |
+
|
184 |
+
```
|
185 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
186 |
+
you may not use this file except in compliance with the License.
|
187 |
+
You may obtain a copy of the License at
|
188 |
+
|
189 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
190 |
+
|
191 |
+
Unless required by applicable law or agreed to in writing, software
|
192 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
193 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
194 |
+
See the License for the specific language governing permissions and
|
195 |
+
limitations under the License.
|
196 |
+
```
|
197 |
+
|
198 |
+
### Acknowledgement
|
199 |
+
|
200 |
+
This project was made possible thanks to the computing resources from [Stability.ai](https://stability.ai), and thanks to [TUNiB](https://tunib.ai) for providing a large-scale Korean dataset for this work.
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./polyglot-ko-1.3b/",
|
3 |
+
"architectures": [
|
4 |
+
"GPTNeoXForCausalLM"
|
5 |
+
],
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"classifier_dropout": 0.1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_size": 2048,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 8192,
|
13 |
+
"layer_norm_eps": 1e-05,
|
14 |
+
"max_position_embeddings": 2048,
|
15 |
+
"model_type": "gpt_neox",
|
16 |
+
"num_attention_heads": 16,
|
17 |
+
"num_hidden_layers": 24,
|
18 |
+
"rotary_emb_base": 10000,
|
19 |
+
"rotary_pct": 0.5,
|
20 |
+
"tie_word_embeddings": false,
|
21 |
+
"torch_dtype": "float16",
|
22 |
+
"transformers_version": "4.29.2",
|
23 |
+
"use_cache": true,
|
24 |
+
"use_parallel_residual": true,
|
25 |
+
"vocab_size": 30080
|
26 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 0,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.29.2"
|
6 |
+
}
|
model-00001-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc6dcf159c11ab442b1ce00c85124a4e13d735c1540661e90b273cac0b438c4a
|
3 |
+
size 1000292202
|
model-00002-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd1929594672146d268055fa2c322e312c883bab7fb8c1bc33efb9878d541dae
|
3 |
+
size 1015555724
|
model-00003-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:75f223f820f5ba69867063bd4e0b6c5277e5bc3e0313a26f686e31d355179a6e
|
3 |
+
size 748480810
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,371 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 2676206640.0
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"embed_out.weight": "model-00003-of-00003.safetensors",
|
7 |
+
"gpt_neox.embed_in.weight": "model-00001-of-00003.safetensors",
|
8 |
+
"gpt_neox.final_layer_norm.bias": "model-00003-of-00003.safetensors",
|
9 |
+
"gpt_neox.final_layer_norm.weight": "model-00003-of-00003.safetensors",
|
10 |
+
"gpt_neox.layers.0.attention.bias": "model-00001-of-00003.safetensors",
|
11 |
+
"gpt_neox.layers.0.attention.dense.bias": "model-00001-of-00003.safetensors",
|
12 |
+
"gpt_neox.layers.0.attention.dense.weight": "model-00001-of-00003.safetensors",
|
13 |
+
"gpt_neox.layers.0.attention.masked_bias": "model-00001-of-00003.safetensors",
|
14 |
+
"gpt_neox.layers.0.attention.query_key_value.bias": "model-00001-of-00003.safetensors",
|
15 |
+
"gpt_neox.layers.0.attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
16 |
+
"gpt_neox.layers.0.attention.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
|
17 |
+
"gpt_neox.layers.0.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
18 |
+
"gpt_neox.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
19 |
+
"gpt_neox.layers.0.mlp.dense_4h_to_h.bias": "model-00001-of-00003.safetensors",
|
20 |
+
"gpt_neox.layers.0.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
|
21 |
+
"gpt_neox.layers.0.mlp.dense_h_to_4h.bias": "model-00001-of-00003.safetensors",
|
22 |
+
"gpt_neox.layers.0.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
23 |
+
"gpt_neox.layers.0.post_attention_layernorm.bias": "model-00001-of-00003.safetensors",
|
24 |
+
"gpt_neox.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
25 |
+
"gpt_neox.layers.1.attention.bias": "model-00001-of-00003.safetensors",
|
26 |
+
"gpt_neox.layers.1.attention.dense.bias": "model-00001-of-00003.safetensors",
|
27 |
+
"gpt_neox.layers.1.attention.dense.weight": "model-00001-of-00003.safetensors",
|
28 |
+
"gpt_neox.layers.1.attention.masked_bias": "model-00001-of-00003.safetensors",
|
29 |
+
"gpt_neox.layers.1.attention.query_key_value.bias": "model-00001-of-00003.safetensors",
|
30 |
+
"gpt_neox.layers.1.attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
31 |
+
"gpt_neox.layers.1.attention.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
|
32 |
+
"gpt_neox.layers.1.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
33 |
+
"gpt_neox.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
34 |
+
"gpt_neox.layers.1.mlp.dense_4h_to_h.bias": "model-00001-of-00003.safetensors",
|
35 |
+
"gpt_neox.layers.1.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
|
36 |
+
"gpt_neox.layers.1.mlp.dense_h_to_4h.bias": "model-00001-of-00003.safetensors",
|
37 |
+
"gpt_neox.layers.1.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
38 |
+
"gpt_neox.layers.1.post_attention_layernorm.bias": "model-00001-of-00003.safetensors",
|
39 |
+
"gpt_neox.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
40 |
+
"gpt_neox.layers.10.attention.bias": "model-00002-of-00003.safetensors",
|
41 |
+
"gpt_neox.layers.10.attention.dense.bias": "model-00002-of-00003.safetensors",
|
42 |
+
"gpt_neox.layers.10.attention.dense.weight": "model-00002-of-00003.safetensors",
|
43 |
+
"gpt_neox.layers.10.attention.masked_bias": "model-00002-of-00003.safetensors",
|
44 |
+
"gpt_neox.layers.10.attention.query_key_value.bias": "model-00002-of-00003.safetensors",
|
45 |
+
"gpt_neox.layers.10.attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
46 |
+
"gpt_neox.layers.10.attention.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
47 |
+
"gpt_neox.layers.10.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
48 |
+
"gpt_neox.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
49 |
+
"gpt_neox.layers.10.mlp.dense_4h_to_h.bias": "model-00002-of-00003.safetensors",
|
50 |
+
"gpt_neox.layers.10.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
51 |
+
"gpt_neox.layers.10.mlp.dense_h_to_4h.bias": "model-00002-of-00003.safetensors",
|
52 |
+
"gpt_neox.layers.10.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
53 |
+
"gpt_neox.layers.10.post_attention_layernorm.bias": "model-00002-of-00003.safetensors",
|
54 |
+
"gpt_neox.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
55 |
+
"gpt_neox.layers.11.attention.bias": "model-00002-of-00003.safetensors",
|
56 |
+
"gpt_neox.layers.11.attention.dense.bias": "model-00002-of-00003.safetensors",
|
57 |
+
"gpt_neox.layers.11.attention.dense.weight": "model-00002-of-00003.safetensors",
|
58 |
+
"gpt_neox.layers.11.attention.masked_bias": "model-00002-of-00003.safetensors",
|
59 |
+
"gpt_neox.layers.11.attention.query_key_value.bias": "model-00002-of-00003.safetensors",
|
60 |
+
"gpt_neox.layers.11.attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
61 |
+
"gpt_neox.layers.11.attention.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
62 |
+
"gpt_neox.layers.11.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
63 |
+
"gpt_neox.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
64 |
+
"gpt_neox.layers.11.mlp.dense_4h_to_h.bias": "model-00002-of-00003.safetensors",
|
65 |
+
"gpt_neox.layers.11.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
66 |
+
"gpt_neox.layers.11.mlp.dense_h_to_4h.bias": "model-00002-of-00003.safetensors",
|
67 |
+
"gpt_neox.layers.11.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
68 |
+
"gpt_neox.layers.11.post_attention_layernorm.bias": "model-00002-of-00003.safetensors",
|
69 |
+
"gpt_neox.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
70 |
+
"gpt_neox.layers.12.attention.bias": "model-00002-of-00003.safetensors",
|
71 |
+
"gpt_neox.layers.12.attention.dense.bias": "model-00002-of-00003.safetensors",
|
72 |
+
"gpt_neox.layers.12.attention.dense.weight": "model-00002-of-00003.safetensors",
|
73 |
+
"gpt_neox.layers.12.attention.masked_bias": "model-00002-of-00003.safetensors",
|
74 |
+
"gpt_neox.layers.12.attention.query_key_value.bias": "model-00002-of-00003.safetensors",
|
75 |
+
"gpt_neox.layers.12.attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
76 |
+
"gpt_neox.layers.12.attention.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
77 |
+
"gpt_neox.layers.12.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
78 |
+
"gpt_neox.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
79 |
+
"gpt_neox.layers.12.mlp.dense_4h_to_h.bias": "model-00002-of-00003.safetensors",
|
80 |
+
"gpt_neox.layers.12.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
81 |
+
"gpt_neox.layers.12.mlp.dense_h_to_4h.bias": "model-00002-of-00003.safetensors",
|
82 |
+
"gpt_neox.layers.12.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
83 |
+
"gpt_neox.layers.12.post_attention_layernorm.bias": "model-00002-of-00003.safetensors",
|
84 |
+
"gpt_neox.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
85 |
+
"gpt_neox.layers.13.attention.bias": "model-00002-of-00003.safetensors",
|
86 |
+
"gpt_neox.layers.13.attention.dense.bias": "model-00002-of-00003.safetensors",
|
87 |
+
"gpt_neox.layers.13.attention.dense.weight": "model-00002-of-00003.safetensors",
|
88 |
+
"gpt_neox.layers.13.attention.masked_bias": "model-00002-of-00003.safetensors",
|
89 |
+
"gpt_neox.layers.13.attention.query_key_value.bias": "model-00002-of-00003.safetensors",
|
90 |
+
"gpt_neox.layers.13.attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
91 |
+
"gpt_neox.layers.13.attention.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
92 |
+
"gpt_neox.layers.13.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
93 |
+
"gpt_neox.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
94 |
+
"gpt_neox.layers.13.mlp.dense_4h_to_h.bias": "model-00002-of-00003.safetensors",
|
95 |
+
"gpt_neox.layers.13.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
96 |
+
"gpt_neox.layers.13.mlp.dense_h_to_4h.bias": "model-00002-of-00003.safetensors",
|
97 |
+
"gpt_neox.layers.13.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
98 |
+
"gpt_neox.layers.13.post_attention_layernorm.bias": "model-00002-of-00003.safetensors",
|
99 |
+
"gpt_neox.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
100 |
+
"gpt_neox.layers.14.attention.bias": "model-00002-of-00003.safetensors",
|
101 |
+
"gpt_neox.layers.14.attention.dense.bias": "model-00002-of-00003.safetensors",
|
102 |
+
"gpt_neox.layers.14.attention.dense.weight": "model-00002-of-00003.safetensors",
|
103 |
+
"gpt_neox.layers.14.attention.masked_bias": "model-00002-of-00003.safetensors",
|
104 |
+
"gpt_neox.layers.14.attention.query_key_value.bias": "model-00002-of-00003.safetensors",
|
105 |
+
"gpt_neox.layers.14.attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
106 |
+
"gpt_neox.layers.14.attention.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
107 |
+
"gpt_neox.layers.14.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
108 |
+
"gpt_neox.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
109 |
+
"gpt_neox.layers.14.mlp.dense_4h_to_h.bias": "model-00002-of-00003.safetensors",
|
110 |
+
"gpt_neox.layers.14.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
111 |
+
"gpt_neox.layers.14.mlp.dense_h_to_4h.bias": "model-00002-of-00003.safetensors",
|
112 |
+
"gpt_neox.layers.14.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
113 |
+
"gpt_neox.layers.14.post_attention_layernorm.bias": "model-00002-of-00003.safetensors",
|
114 |
+
"gpt_neox.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
115 |
+
"gpt_neox.layers.15.attention.bias": "model-00002-of-00003.safetensors",
|
116 |
+
"gpt_neox.layers.15.attention.dense.bias": "model-00002-of-00003.safetensors",
|
117 |
+
"gpt_neox.layers.15.attention.dense.weight": "model-00002-of-00003.safetensors",
|
118 |
+
"gpt_neox.layers.15.attention.masked_bias": "model-00002-of-00003.safetensors",
|
119 |
+
"gpt_neox.layers.15.attention.query_key_value.bias": "model-00002-of-00003.safetensors",
|
120 |
+
"gpt_neox.layers.15.attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
121 |
+
"gpt_neox.layers.15.attention.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
122 |
+
"gpt_neox.layers.15.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
123 |
+
"gpt_neox.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
124 |
+
"gpt_neox.layers.15.mlp.dense_4h_to_h.bias": "model-00002-of-00003.safetensors",
|
125 |
+
"gpt_neox.layers.15.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
126 |
+
"gpt_neox.layers.15.mlp.dense_h_to_4h.bias": "model-00002-of-00003.safetensors",
|
127 |
+
"gpt_neox.layers.15.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
128 |
+
"gpt_neox.layers.15.post_attention_layernorm.bias": "model-00002-of-00003.safetensors",
|
129 |
+
"gpt_neox.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
130 |
+
"gpt_neox.layers.16.attention.bias": "model-00002-of-00003.safetensors",
|
131 |
+
"gpt_neox.layers.16.attention.dense.bias": "model-00002-of-00003.safetensors",
|
132 |
+
"gpt_neox.layers.16.attention.dense.weight": "model-00002-of-00003.safetensors",
|
133 |
+
"gpt_neox.layers.16.attention.masked_bias": "model-00002-of-00003.safetensors",
|
134 |
+
"gpt_neox.layers.16.attention.query_key_value.bias": "model-00002-of-00003.safetensors",
|
135 |
+
"gpt_neox.layers.16.attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
136 |
+
"gpt_neox.layers.16.attention.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
137 |
+
"gpt_neox.layers.16.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
138 |
+
"gpt_neox.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
139 |
+
"gpt_neox.layers.16.mlp.dense_4h_to_h.bias": "model-00002-of-00003.safetensors",
|
140 |
+
"gpt_neox.layers.16.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
141 |
+
"gpt_neox.layers.16.mlp.dense_h_to_4h.bias": "model-00002-of-00003.safetensors",
|
142 |
+
"gpt_neox.layers.16.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
143 |
+
"gpt_neox.layers.16.post_attention_layernorm.bias": "model-00002-of-00003.safetensors",
|
144 |
+
"gpt_neox.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
145 |
+
"gpt_neox.layers.17.attention.bias": "model-00002-of-00003.safetensors",
|
146 |
+
"gpt_neox.layers.17.attention.dense.bias": "model-00002-of-00003.safetensors",
|
147 |
+
"gpt_neox.layers.17.attention.dense.weight": "model-00002-of-00003.safetensors",
|
148 |
+
"gpt_neox.layers.17.attention.masked_bias": "model-00002-of-00003.safetensors",
|
149 |
+
"gpt_neox.layers.17.attention.query_key_value.bias": "model-00002-of-00003.safetensors",
|
150 |
+
"gpt_neox.layers.17.attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
151 |
+
"gpt_neox.layers.17.attention.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
152 |
+
"gpt_neox.layers.17.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
153 |
+
"gpt_neox.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
154 |
+
"gpt_neox.layers.17.mlp.dense_4h_to_h.bias": "model-00002-of-00003.safetensors",
|
155 |
+
"gpt_neox.layers.17.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
156 |
+
"gpt_neox.layers.17.mlp.dense_h_to_4h.bias": "model-00002-of-00003.safetensors",
|
157 |
+
"gpt_neox.layers.17.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
158 |
+
"gpt_neox.layers.17.post_attention_layernorm.bias": "model-00002-of-00003.safetensors",
|
159 |
+
"gpt_neox.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
160 |
+
"gpt_neox.layers.18.attention.bias": "model-00002-of-00003.safetensors",
|
161 |
+
"gpt_neox.layers.18.attention.dense.bias": "model-00003-of-00003.safetensors",
|
162 |
+
"gpt_neox.layers.18.attention.dense.weight": "model-00003-of-00003.safetensors",
|
163 |
+
"gpt_neox.layers.18.attention.masked_bias": "model-00002-of-00003.safetensors",
|
164 |
+
"gpt_neox.layers.18.attention.query_key_value.bias": "model-00003-of-00003.safetensors",
|
165 |
+
"gpt_neox.layers.18.attention.query_key_value.weight": "model-00003-of-00003.safetensors",
|
166 |
+
"gpt_neox.layers.18.attention.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
167 |
+
"gpt_neox.layers.18.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
168 |
+
"gpt_neox.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
169 |
+
"gpt_neox.layers.18.mlp.dense_4h_to_h.bias": "model-00003-of-00003.safetensors",
|
170 |
+
"gpt_neox.layers.18.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
|
171 |
+
"gpt_neox.layers.18.mlp.dense_h_to_4h.bias": "model-00003-of-00003.safetensors",
|
172 |
+
"gpt_neox.layers.18.mlp.dense_h_to_4h.weight": "model-00003-of-00003.safetensors",
|
173 |
+
"gpt_neox.layers.18.post_attention_layernorm.bias": "model-00002-of-00003.safetensors",
|
174 |
+
"gpt_neox.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
175 |
+
"gpt_neox.layers.19.attention.bias": "model-00003-of-00003.safetensors",
|
176 |
+
"gpt_neox.layers.19.attention.dense.bias": "model-00003-of-00003.safetensors",
|
177 |
+
"gpt_neox.layers.19.attention.dense.weight": "model-00003-of-00003.safetensors",
|
178 |
+
"gpt_neox.layers.19.attention.masked_bias": "model-00003-of-00003.safetensors",
|
179 |
+
"gpt_neox.layers.19.attention.query_key_value.bias": "model-00003-of-00003.safetensors",
|
180 |
+
"gpt_neox.layers.19.attention.query_key_value.weight": "model-00003-of-00003.safetensors",
|
181 |
+
"gpt_neox.layers.19.attention.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
|
182 |
+
"gpt_neox.layers.19.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
183 |
+
"gpt_neox.layers.19.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
184 |
+
"gpt_neox.layers.19.mlp.dense_4h_to_h.bias": "model-00003-of-00003.safetensors",
|
185 |
+
"gpt_neox.layers.19.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
|
186 |
+
"gpt_neox.layers.19.mlp.dense_h_to_4h.bias": "model-00003-of-00003.safetensors",
|
187 |
+
"gpt_neox.layers.19.mlp.dense_h_to_4h.weight": "model-00003-of-00003.safetensors",
|
188 |
+
"gpt_neox.layers.19.post_attention_layernorm.bias": "model-00003-of-00003.safetensors",
|
189 |
+
"gpt_neox.layers.19.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
190 |
+
"gpt_neox.layers.2.attention.bias": "model-00001-of-00003.safetensors",
|
191 |
+
"gpt_neox.layers.2.attention.dense.bias": "model-00001-of-00003.safetensors",
|
192 |
+
"gpt_neox.layers.2.attention.dense.weight": "model-00001-of-00003.safetensors",
|
193 |
+
"gpt_neox.layers.2.attention.masked_bias": "model-00001-of-00003.safetensors",
|
194 |
+
"gpt_neox.layers.2.attention.query_key_value.bias": "model-00001-of-00003.safetensors",
|
195 |
+
"gpt_neox.layers.2.attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
196 |
+
"gpt_neox.layers.2.attention.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
|
197 |
+
"gpt_neox.layers.2.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
198 |
+
"gpt_neox.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
199 |
+
"gpt_neox.layers.2.mlp.dense_4h_to_h.bias": "model-00001-of-00003.safetensors",
|
200 |
+
"gpt_neox.layers.2.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
|
201 |
+
"gpt_neox.layers.2.mlp.dense_h_to_4h.bias": "model-00001-of-00003.safetensors",
|
202 |
+
"gpt_neox.layers.2.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
203 |
+
"gpt_neox.layers.2.post_attention_layernorm.bias": "model-00001-of-00003.safetensors",
|
204 |
+
"gpt_neox.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
205 |
+
"gpt_neox.layers.20.attention.bias": "model-00003-of-00003.safetensors",
|
206 |
+
"gpt_neox.layers.20.attention.dense.bias": "model-00003-of-00003.safetensors",
|
207 |
+
"gpt_neox.layers.20.attention.dense.weight": "model-00003-of-00003.safetensors",
|
208 |
+
"gpt_neox.layers.20.attention.masked_bias": "model-00003-of-00003.safetensors",
|
209 |
+
"gpt_neox.layers.20.attention.query_key_value.bias": "model-00003-of-00003.safetensors",
|
210 |
+
"gpt_neox.layers.20.attention.query_key_value.weight": "model-00003-of-00003.safetensors",
|
211 |
+
"gpt_neox.layers.20.attention.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
|
212 |
+
"gpt_neox.layers.20.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
213 |
+
"gpt_neox.layers.20.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
214 |
+
"gpt_neox.layers.20.mlp.dense_4h_to_h.bias": "model-00003-of-00003.safetensors",
|
215 |
+
"gpt_neox.layers.20.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
|
216 |
+
"gpt_neox.layers.20.mlp.dense_h_to_4h.bias": "model-00003-of-00003.safetensors",
|
217 |
+
"gpt_neox.layers.20.mlp.dense_h_to_4h.weight": "model-00003-of-00003.safetensors",
|
218 |
+
"gpt_neox.layers.20.post_attention_layernorm.bias": "model-00003-of-00003.safetensors",
|
219 |
+
"gpt_neox.layers.20.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
220 |
+
"gpt_neox.layers.21.attention.bias": "model-00003-of-00003.safetensors",
|
221 |
+
"gpt_neox.layers.21.attention.dense.bias": "model-00003-of-00003.safetensors",
|
222 |
+
"gpt_neox.layers.21.attention.dense.weight": "model-00003-of-00003.safetensors",
|
223 |
+
"gpt_neox.layers.21.attention.masked_bias": "model-00003-of-00003.safetensors",
|
224 |
+
"gpt_neox.layers.21.attention.query_key_value.bias": "model-00003-of-00003.safetensors",
|
225 |
+
"gpt_neox.layers.21.attention.query_key_value.weight": "model-00003-of-00003.safetensors",
|
226 |
+
"gpt_neox.layers.21.attention.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
|
227 |
+
"gpt_neox.layers.21.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
228 |
+
"gpt_neox.layers.21.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
229 |
+
"gpt_neox.layers.21.mlp.dense_4h_to_h.bias": "model-00003-of-00003.safetensors",
|
230 |
+
"gpt_neox.layers.21.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
|
231 |
+
"gpt_neox.layers.21.mlp.dense_h_to_4h.bias": "model-00003-of-00003.safetensors",
|
232 |
+
"gpt_neox.layers.21.mlp.dense_h_to_4h.weight": "model-00003-of-00003.safetensors",
|
233 |
+
"gpt_neox.layers.21.post_attention_layernorm.bias": "model-00003-of-00003.safetensors",
|
234 |
+
"gpt_neox.layers.21.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
235 |
+
"gpt_neox.layers.22.attention.bias": "model-00003-of-00003.safetensors",
|
236 |
+
"gpt_neox.layers.22.attention.dense.bias": "model-00003-of-00003.safetensors",
|
237 |
+
"gpt_neox.layers.22.attention.dense.weight": "model-00003-of-00003.safetensors",
|
238 |
+
"gpt_neox.layers.22.attention.masked_bias": "model-00003-of-00003.safetensors",
|
239 |
+
"gpt_neox.layers.22.attention.query_key_value.bias": "model-00003-of-00003.safetensors",
|
240 |
+
"gpt_neox.layers.22.attention.query_key_value.weight": "model-00003-of-00003.safetensors",
|
241 |
+
"gpt_neox.layers.22.attention.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
|
242 |
+
"gpt_neox.layers.22.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
243 |
+
"gpt_neox.layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
244 |
+
"gpt_neox.layers.22.mlp.dense_4h_to_h.bias": "model-00003-of-00003.safetensors",
|
245 |
+
"gpt_neox.layers.22.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
|
246 |
+
"gpt_neox.layers.22.mlp.dense_h_to_4h.bias": "model-00003-of-00003.safetensors",
|
247 |
+
"gpt_neox.layers.22.mlp.dense_h_to_4h.weight": "model-00003-of-00003.safetensors",
|
248 |
+
"gpt_neox.layers.22.post_attention_layernorm.bias": "model-00003-of-00003.safetensors",
|
249 |
+
"gpt_neox.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
250 |
+
"gpt_neox.layers.23.attention.bias": "model-00003-of-00003.safetensors",
|
251 |
+
"gpt_neox.layers.23.attention.dense.bias": "model-00003-of-00003.safetensors",
|
252 |
+
"gpt_neox.layers.23.attention.dense.weight": "model-00003-of-00003.safetensors",
|
253 |
+
"gpt_neox.layers.23.attention.masked_bias": "model-00003-of-00003.safetensors",
|
254 |
+
"gpt_neox.layers.23.attention.query_key_value.bias": "model-00003-of-00003.safetensors",
|
255 |
+
"gpt_neox.layers.23.attention.query_key_value.weight": "model-00003-of-00003.safetensors",
|
256 |
+
"gpt_neox.layers.23.attention.rotary_emb.inv_freq": "model-00003-of-00003.safetensors",
|
257 |
+
"gpt_neox.layers.23.input_layernorm.bias": "model-00003-of-00003.safetensors",
|
258 |
+
"gpt_neox.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
259 |
+
"gpt_neox.layers.23.mlp.dense_4h_to_h.bias": "model-00003-of-00003.safetensors",
|
260 |
+
"gpt_neox.layers.23.mlp.dense_4h_to_h.weight": "model-00003-of-00003.safetensors",
|
261 |
+
"gpt_neox.layers.23.mlp.dense_h_to_4h.bias": "model-00003-of-00003.safetensors",
|
262 |
+
"gpt_neox.layers.23.mlp.dense_h_to_4h.weight": "model-00003-of-00003.safetensors",
|
263 |
+
"gpt_neox.layers.23.post_attention_layernorm.bias": "model-00003-of-00003.safetensors",
|
264 |
+
"gpt_neox.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
265 |
+
"gpt_neox.layers.3.attention.bias": "model-00001-of-00003.safetensors",
|
266 |
+
"gpt_neox.layers.3.attention.dense.bias": "model-00001-of-00003.safetensors",
|
267 |
+
"gpt_neox.layers.3.attention.dense.weight": "model-00001-of-00003.safetensors",
|
268 |
+
"gpt_neox.layers.3.attention.masked_bias": "model-00001-of-00003.safetensors",
|
269 |
+
"gpt_neox.layers.3.attention.query_key_value.bias": "model-00001-of-00003.safetensors",
|
270 |
+
"gpt_neox.layers.3.attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
271 |
+
"gpt_neox.layers.3.attention.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
|
272 |
+
"gpt_neox.layers.3.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
273 |
+
"gpt_neox.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
274 |
+
"gpt_neox.layers.3.mlp.dense_4h_to_h.bias": "model-00001-of-00003.safetensors",
|
275 |
+
"gpt_neox.layers.3.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
|
276 |
+
"gpt_neox.layers.3.mlp.dense_h_to_4h.bias": "model-00001-of-00003.safetensors",
|
277 |
+
"gpt_neox.layers.3.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
278 |
+
"gpt_neox.layers.3.post_attention_layernorm.bias": "model-00001-of-00003.safetensors",
|
279 |
+
"gpt_neox.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
280 |
+
"gpt_neox.layers.4.attention.bias": "model-00001-of-00003.safetensors",
|
281 |
+
"gpt_neox.layers.4.attention.dense.bias": "model-00001-of-00003.safetensors",
|
282 |
+
"gpt_neox.layers.4.attention.dense.weight": "model-00001-of-00003.safetensors",
|
283 |
+
"gpt_neox.layers.4.attention.masked_bias": "model-00001-of-00003.safetensors",
|
284 |
+
"gpt_neox.layers.4.attention.query_key_value.bias": "model-00001-of-00003.safetensors",
|
285 |
+
"gpt_neox.layers.4.attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
286 |
+
"gpt_neox.layers.4.attention.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
|
287 |
+
"gpt_neox.layers.4.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
288 |
+
"gpt_neox.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
289 |
+
"gpt_neox.layers.4.mlp.dense_4h_to_h.bias": "model-00001-of-00003.safetensors",
|
290 |
+
"gpt_neox.layers.4.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
|
291 |
+
"gpt_neox.layers.4.mlp.dense_h_to_4h.bias": "model-00001-of-00003.safetensors",
|
292 |
+
"gpt_neox.layers.4.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
293 |
+
"gpt_neox.layers.4.post_attention_layernorm.bias": "model-00001-of-00003.safetensors",
|
294 |
+
"gpt_neox.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
295 |
+
"gpt_neox.layers.5.attention.bias": "model-00001-of-00003.safetensors",
|
296 |
+
"gpt_neox.layers.5.attention.dense.bias": "model-00001-of-00003.safetensors",
|
297 |
+
"gpt_neox.layers.5.attention.dense.weight": "model-00001-of-00003.safetensors",
|
298 |
+
"gpt_neox.layers.5.attention.masked_bias": "model-00001-of-00003.safetensors",
|
299 |
+
"gpt_neox.layers.5.attention.query_key_value.bias": "model-00001-of-00003.safetensors",
|
300 |
+
"gpt_neox.layers.5.attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
301 |
+
"gpt_neox.layers.5.attention.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
|
302 |
+
"gpt_neox.layers.5.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
303 |
+
"gpt_neox.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
304 |
+
"gpt_neox.layers.5.mlp.dense_4h_to_h.bias": "model-00001-of-00003.safetensors",
|
305 |
+
"gpt_neox.layers.5.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
|
306 |
+
"gpt_neox.layers.5.mlp.dense_h_to_4h.bias": "model-00001-of-00003.safetensors",
|
307 |
+
"gpt_neox.layers.5.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
308 |
+
"gpt_neox.layers.5.post_attention_layernorm.bias": "model-00001-of-00003.safetensors",
|
309 |
+
"gpt_neox.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
310 |
+
"gpt_neox.layers.6.attention.bias": "model-00001-of-00003.safetensors",
|
311 |
+
"gpt_neox.layers.6.attention.dense.bias": "model-00001-of-00003.safetensors",
|
312 |
+
"gpt_neox.layers.6.attention.dense.weight": "model-00001-of-00003.safetensors",
|
313 |
+
"gpt_neox.layers.6.attention.masked_bias": "model-00001-of-00003.safetensors",
|
314 |
+
"gpt_neox.layers.6.attention.query_key_value.bias": "model-00001-of-00003.safetensors",
|
315 |
+
"gpt_neox.layers.6.attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
316 |
+
"gpt_neox.layers.6.attention.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
|
317 |
+
"gpt_neox.layers.6.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
318 |
+
"gpt_neox.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
319 |
+
"gpt_neox.layers.6.mlp.dense_4h_to_h.bias": "model-00001-of-00003.safetensors",
|
320 |
+
"gpt_neox.layers.6.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
|
321 |
+
"gpt_neox.layers.6.mlp.dense_h_to_4h.bias": "model-00001-of-00003.safetensors",
|
322 |
+
"gpt_neox.layers.6.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
323 |
+
"gpt_neox.layers.6.post_attention_layernorm.bias": "model-00001-of-00003.safetensors",
|
324 |
+
"gpt_neox.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
325 |
+
"gpt_neox.layers.7.attention.bias": "model-00001-of-00003.safetensors",
|
326 |
+
"gpt_neox.layers.7.attention.dense.bias": "model-00001-of-00003.safetensors",
|
327 |
+
"gpt_neox.layers.7.attention.dense.weight": "model-00001-of-00003.safetensors",
|
328 |
+
"gpt_neox.layers.7.attention.masked_bias": "model-00001-of-00003.safetensors",
|
329 |
+
"gpt_neox.layers.7.attention.query_key_value.bias": "model-00001-of-00003.safetensors",
|
330 |
+
"gpt_neox.layers.7.attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
331 |
+
"gpt_neox.layers.7.attention.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
|
332 |
+
"gpt_neox.layers.7.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
333 |
+
"gpt_neox.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
334 |
+
"gpt_neox.layers.7.mlp.dense_4h_to_h.bias": "model-00001-of-00003.safetensors",
|
335 |
+
"gpt_neox.layers.7.mlp.dense_4h_to_h.weight": "model-00001-of-00003.safetensors",
|
336 |
+
"gpt_neox.layers.7.mlp.dense_h_to_4h.bias": "model-00001-of-00003.safetensors",
|
337 |
+
"gpt_neox.layers.7.mlp.dense_h_to_4h.weight": "model-00001-of-00003.safetensors",
|
338 |
+
"gpt_neox.layers.7.post_attention_layernorm.bias": "model-00001-of-00003.safetensors",
|
339 |
+
"gpt_neox.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
340 |
+
"gpt_neox.layers.8.attention.bias": "model-00001-of-00003.safetensors",
|
341 |
+
"gpt_neox.layers.8.attention.dense.bias": "model-00001-of-00003.safetensors",
|
342 |
+
"gpt_neox.layers.8.attention.dense.weight": "model-00001-of-00003.safetensors",
|
343 |
+
"gpt_neox.layers.8.attention.masked_bias": "model-00001-of-00003.safetensors",
|
344 |
+
"gpt_neox.layers.8.attention.query_key_value.bias": "model-00001-of-00003.safetensors",
|
345 |
+
"gpt_neox.layers.8.attention.query_key_value.weight": "model-00001-of-00003.safetensors",
|
346 |
+
"gpt_neox.layers.8.attention.rotary_emb.inv_freq": "model-00001-of-00003.safetensors",
|
347 |
+
"gpt_neox.layers.8.input_layernorm.bias": "model-00001-of-00003.safetensors",
|
348 |
+
"gpt_neox.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
349 |
+
"gpt_neox.layers.8.mlp.dense_4h_to_h.bias": "model-00002-of-00003.safetensors",
|
350 |
+
"gpt_neox.layers.8.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
351 |
+
"gpt_neox.layers.8.mlp.dense_h_to_4h.bias": "model-00002-of-00003.safetensors",
|
352 |
+
"gpt_neox.layers.8.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
353 |
+
"gpt_neox.layers.8.post_attention_layernorm.bias": "model-00001-of-00003.safetensors",
|
354 |
+
"gpt_neox.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
355 |
+
"gpt_neox.layers.9.attention.bias": "model-00002-of-00003.safetensors",
|
356 |
+
"gpt_neox.layers.9.attention.dense.bias": "model-00002-of-00003.safetensors",
|
357 |
+
"gpt_neox.layers.9.attention.dense.weight": "model-00002-of-00003.safetensors",
|
358 |
+
"gpt_neox.layers.9.attention.masked_bias": "model-00002-of-00003.safetensors",
|
359 |
+
"gpt_neox.layers.9.attention.query_key_value.bias": "model-00002-of-00003.safetensors",
|
360 |
+
"gpt_neox.layers.9.attention.query_key_value.weight": "model-00002-of-00003.safetensors",
|
361 |
+
"gpt_neox.layers.9.attention.rotary_emb.inv_freq": "model-00002-of-00003.safetensors",
|
362 |
+
"gpt_neox.layers.9.input_layernorm.bias": "model-00002-of-00003.safetensors",
|
363 |
+
"gpt_neox.layers.9.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
364 |
+
"gpt_neox.layers.9.mlp.dense_4h_to_h.bias": "model-00002-of-00003.safetensors",
|
365 |
+
"gpt_neox.layers.9.mlp.dense_4h_to_h.weight": "model-00002-of-00003.safetensors",
|
366 |
+
"gpt_neox.layers.9.mlp.dense_h_to_4h.bias": "model-00002-of-00003.safetensors",
|
367 |
+
"gpt_neox.layers.9.mlp.dense_h_to_4h.weight": "model-00002-of-00003.safetensors",
|
368 |
+
"gpt_neox.layers.9.post_attention_layernorm.bias": "model-00002-of-00003.safetensors",
|
369 |
+
"gpt_neox.layers.9.post_attention_layernorm.weight": "model-00002-of-00003.safetensors"
|
370 |
+
}
|
371 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33ab71caac3a04a2e62ac20e5ffc9f2c58c89e2409f57e42b86ea53688772c3c
|
3 |
+
size 1125308122
|
special_tokens_map.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|endoftext|>",
|
4 |
+
"<|sep|>",
|
5 |
+
"<|acc|>",
|
6 |
+
"<|tel|>",
|
7 |
+
"<|rrn|>"
|
8 |
+
],
|
9 |
+
"eos_token": "<|endoftext|>",
|
10 |
+
"pad_token": "<|endoftext|>"
|
11 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"name_or_path": "EleutherAI/polyglot-ko-1.3b",
|
3 |
+
"eos_token": "<|endoftext|>",
|
4 |
+
"pad_token": "<|endoftext|>",
|
5 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
6 |
+
}
|