KYUNGHYUN9 commited on
Commit
503df11
1 Parent(s): 452a4d7

Upload 12 files

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,457 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: klue/roberta-base
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - pearson_cosine
8
+ - spearman_cosine
9
+ - pearson_manhattan
10
+ - spearman_manhattan
11
+ - pearson_euclidean
12
+ - spearman_euclidean
13
+ - pearson_dot
14
+ - spearman_dot
15
+ - pearson_max
16
+ - spearman_max
17
+ pipeline_tag: sentence-similarity
18
+ tags:
19
+ - sentence-transformers
20
+ - sentence-similarity
21
+ - feature-extraction
22
+ - generated_from_trainer
23
+ - dataset_size:574458
24
+ - loss:MultipleNegativesRankingLoss
25
+ - loss:CosineSimilarityLoss
26
+ widget:
27
+ - source_sentence: 왜 토마스의 책은 캐논에서 제외되었는가?
28
+ sentences:
29
+ - 나토는 북한의 핵실험이 세계 평화에 중대한 위협이라고 말한다
30
+ - 왜 더 많은 예수의 말을 캐논에서 제외시키는가?
31
+ - 마이크로소프트는 올해 초 개발자인 커넥틱스로부터 가상 PC를 인수했다.
32
+ - source_sentence: 구글 네임 뉴모토롤라 이동성 CEO
33
+ sentences:
34
+ - 경찰 대변인인 에드워드 아리토낭 준장은 어제 또 다른 두 명이 자카르타에서, 또 다른 한 명은 자바 중부 마젤랑에서 체포되었다고 확인했다.
35
+ - 구글은 데니스 우드사이드를 모토롤라 이동성 운영에 임명한다.
36
+ - 한 소녀가 차에 뛰어오르고 있다.
37
+ - source_sentence: 나는 이따금 TV를 켜서 세상 돌아가는 일을 따라갈 것이다.
38
+ sentences:
39
+ - 그래서 나는 TV를 켜고 화장실에서 다시 들을 수 있고, 너는 세상에서 무슨 일이 일어나고 있는지 계속 알고 있어. 그래서 나는 CNN이나
40
+ 굿모닝 아메리카 같은 것을 할 거야. 하지만 가끔씩.
41
+ - 두 남자가 등을 맞댄다.
42
+ - 나는 침대에 누워 영화를 보기 위해 TV만 사용한다.
43
+ - source_sentence: 이 이야기는 고통스러울 정도로 진부할 것이기 때문에 고통스러울 정도로 짧을 것이다.
44
+ sentences:
45
+ - 그 일은 매우 길고 흥미로울 것이다.
46
+ - 음-흠, 여기엔 가격이 꽤 괜찮은 지역 탁아소가 있지만 수도권에서는 수표를 작성하는 동안 머리에 총을 겨누고 있어
47
+ - 이야기는 짧을 것이다.
48
+ - source_sentence: 한 소녀가 책을 읽는다.
49
+ sentences:
50
+ - 온 동네가 겨울 날씨를 즐기며 아이들과 즐거운 시간을 보내고 있다.
51
+ - 한 소녀가 교실에서 다른 학생에게 책을 읽고 있다.
52
+ - 어린 소녀가 공 구덩이에서 논다.
53
+ model-index:
54
+ - name: SentenceTransformer based on klue/roberta-base
55
+ results:
56
+ - task:
57
+ type: semantic-similarity
58
+ name: Semantic Similarity
59
+ dataset:
60
+ name: sts dev
61
+ type: sts-dev
62
+ metrics:
63
+ - type: pearson_cosine
64
+ value: 0.8729482428052353
65
+ name: Pearson Cosine
66
+ - type: spearman_cosine
67
+ value: 0.8746302830344509
68
+ name: Spearman Cosine
69
+ - type: pearson_manhattan
70
+ value: 0.870886028839716
71
+ name: Pearson Manhattan
72
+ - type: spearman_manhattan
73
+ value: 0.8737323612076164
74
+ name: Spearman Manhattan
75
+ - type: pearson_euclidean
76
+ value: 0.8714644437376398
77
+ name: Pearson Euclidean
78
+ - type: spearman_euclidean
79
+ value: 0.8741693303098689
80
+ name: Spearman Euclidean
81
+ - type: pearson_dot
82
+ value: 0.8560781025117317
83
+ name: Pearson Dot
84
+ - type: spearman_dot
85
+ value: 0.8532116975486153
86
+ name: Spearman Dot
87
+ - type: pearson_max
88
+ value: 0.8729482428052353
89
+ name: Pearson Max
90
+ - type: spearman_max
91
+ value: 0.8746302830344509
92
+ name: Spearman Max
93
+ ---
94
+
95
+ # SentenceTransformer based on klue/roberta-base
96
+
97
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [klue/roberta-base](https://huggingface.co/klue/roberta-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
98
+
99
+ ## Model Details
100
+
101
+ ### Model Description
102
+ - **Model Type:** Sentence Transformer
103
+ - **Base model:** [klue/roberta-base](https://huggingface.co/klue/roberta-base) <!-- at revision 02f94ba5e3fcb7e2a58a390b8639b0fac974a8da -->
104
+ - **Maximum Sequence Length:** 128 tokens
105
+ - **Output Dimensionality:** 768 tokens
106
+ - **Similarity Function:** Cosine Similarity
107
+ <!-- - **Training Dataset:** Unknown -->
108
+ <!-- - **Language:** Unknown -->
109
+ <!-- - **License:** Unknown -->
110
+
111
+ ### Model Sources
112
+
113
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
114
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
115
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
116
+
117
+ ### Full Model Architecture
118
+
119
+ ```
120
+ SentenceTransformer(
121
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel
122
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
123
+ )
124
+ ```
125
+
126
+ ## Usage
127
+
128
+ ### Direct Usage (Sentence Transformers)
129
+
130
+ First install the Sentence Transformers library:
131
+
132
+ ```bash
133
+ pip install -U sentence-transformers
134
+ ```
135
+
136
+ Then you can load this model and run inference.
137
+ ```python
138
+ from sentence_transformers import SentenceTransformer
139
+
140
+ # Download from the 🤗 Hub
141
+ model = SentenceTransformer("sentence_transformers_model_id")
142
+ # Run inference
143
+ sentences = [
144
+ '한 소녀가 책을 읽는다.',
145
+ '한 소녀가 교실에서 다른 학생에게 책을 읽고 있다.',
146
+ '어린 소녀가 공 구덩이에서 논다.',
147
+ ]
148
+ embeddings = model.encode(sentences)
149
+ print(embeddings.shape)
150
+ # [3, 768]
151
+
152
+ # Get the similarity scores for the embeddings
153
+ similarities = model.similarity(embeddings, embeddings)
154
+ print(similarities.shape)
155
+ # [3, 3]
156
+ ```
157
+
158
+ <!--
159
+ ### Direct Usage (Transformers)
160
+
161
+ <details><summary>Click to see the direct usage in Transformers</summary>
162
+
163
+ </details>
164
+ -->
165
+
166
+ <!--
167
+ ### Downstream Usage (Sentence Transformers)
168
+
169
+ You can finetune this model on your own dataset.
170
+
171
+ <details><summary>Click to expand</summary>
172
+
173
+ </details>
174
+ -->
175
+
176
+ <!--
177
+ ### Out-of-Scope Use
178
+
179
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
180
+ -->
181
+
182
+ ## Evaluation
183
+
184
+ ### Metrics
185
+
186
+ #### Semantic Similarity
187
+ * Dataset: `sts-dev`
188
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
189
+
190
+ | Metric | Value |
191
+ |:-------------------|:-----------|
192
+ | pearson_cosine | 0.8729 |
193
+ | spearman_cosine | 0.8746 |
194
+ | pearson_manhattan | 0.8709 |
195
+ | spearman_manhattan | 0.8737 |
196
+ | pearson_euclidean | 0.8715 |
197
+ | spearman_euclidean | 0.8742 |
198
+ | pearson_dot | 0.8561 |
199
+ | spearman_dot | 0.8532 |
200
+ | pearson_max | 0.8729 |
201
+ | **spearman_max** | **0.8746** |
202
+
203
+ <!--
204
+ ## Bias, Risks and Limitations
205
+
206
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
207
+ -->
208
+
209
+ <!--
210
+ ### Recommendations
211
+
212
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
213
+ -->
214
+
215
+ ## Training Details
216
+
217
+ ### Training Datasets
218
+
219
+ #### Unnamed Dataset
220
+
221
+
222
+ * Size: 568,640 training samples
223
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
224
+ * Approximate statistics based on the first 1000 samples:
225
+ | | sentence_0 | sentence_1 | sentence_2 |
226
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
227
+ | type | string | string | string |
228
+ | details | <ul><li>min: 4 tokens</li><li>mean: 19.2 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 18.33 tokens</li><li>max: 93 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.56 tokens</li><li>max: 54 tokens</li></ul> |
229
+ * Samples:
230
+ | sentence_0 | sentence_1 | sentence_2 |
231
+ |:----------------------------------------|:-------------------------------------------------|:--------------------------------------|
232
+ | <code>발생 부하가 함께 5% 적습니다.</code> | <code>발생 부하의 5% 감소와 함께 11.</code> | <code>발생 부하가 5% 증가합니다.</code> |
233
+ | <code>어떤 행사를 위해 음식과 옷을 배급하는 여성들.</code> | <code>여성들은 음식과 옷을 나눠줌으로써 난민들을 돕고 있다.</code> | <code>여자들이 사막에서 오토바이를 운전하고 있다.</code> |
234
+ | <code>어린 아이들은 그 지식을 얻을 필요가 있다.</code> | <code>응, 우리 젊은이들 중 많은 사람들이 그걸 배워야 할 것 같아.</code> | <code>젊은 사람들은 배울 필요가 없다.</code> |
235
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
236
+ ```json
237
+ {
238
+ "scale": 20.0,
239
+ "similarity_fct": "cos_sim"
240
+ }
241
+ ```
242
+
243
+ #### Unnamed Dataset
244
+
245
+
246
+ * Size: 5,818 training samples
247
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
248
+ * Approximate statistics based on the first 1000 samples:
249
+ | | sentence_0 | sentence_1 | label |
250
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
251
+ | type | string | string | float |
252
+ | details | <ul><li>min: 3 tokens</li><li>mean: 17.01 tokens</li><li>max: 65 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 17.01 tokens</li><li>max: 59 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.55</li><li>max: 1.0</li></ul> |
253
+ * Samples:
254
+ | sentence_0 | sentence_1 | label |
255
+ |:---------------------------------------|:---------------------------------------|:--------------------------------|
256
+ | <code>터키 대통령은 침착함을 호소한다.</code> | <code>텍사스 하우스, 낙태법 임시 승인</code> | <code>0.0</code> |
257
+ | <code>볼리우드는 루피 붕괴로 3분의 1의 비용 절감</code> | <code>볼리우드는 루피 위기가 물자 비용을 절감한다.</code> | <code>0.8400000000000001</code> |
258
+ | <code>남자가 종이 접시를 잘랐다.</code> | <code>남자가 종이 접시를 자르고 있다.</code> | <code>0.96</code> |
259
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
260
+ ```json
261
+ {
262
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
263
+ }
264
+ ```
265
+
266
+ ### Training Hyperparameters
267
+ #### Non-Default Hyperparameters
268
+
269
+ - `eval_strategy`: steps
270
+ - `num_train_epochs`: 5
271
+ - `batch_sampler`: no_duplicates
272
+ - `multi_dataset_batch_sampler`: round_robin
273
+
274
+ #### All Hyperparameters
275
+ <details><summary>Click to expand</summary>
276
+
277
+ - `overwrite_output_dir`: False
278
+ - `do_predict`: False
279
+ - `eval_strategy`: steps
280
+ - `prediction_loss_only`: True
281
+ - `per_device_train_batch_size`: 8
282
+ - `per_device_eval_batch_size`: 8
283
+ - `per_gpu_train_batch_size`: None
284
+ - `per_gpu_eval_batch_size`: None
285
+ - `gradient_accumulation_steps`: 1
286
+ - `eval_accumulation_steps`: None
287
+ - `learning_rate`: 5e-05
288
+ - `weight_decay`: 0.0
289
+ - `adam_beta1`: 0.9
290
+ - `adam_beta2`: 0.999
291
+ - `adam_epsilon`: 1e-08
292
+ - `max_grad_norm`: 1
293
+ - `num_train_epochs`: 5
294
+ - `max_steps`: -1
295
+ - `lr_scheduler_type`: linear
296
+ - `lr_scheduler_kwargs`: {}
297
+ - `warmup_ratio`: 0.0
298
+ - `warmup_steps`: 0
299
+ - `log_level`: passive
300
+ - `log_level_replica`: warning
301
+ - `log_on_each_node`: True
302
+ - `logging_nan_inf_filter`: True
303
+ - `save_safetensors`: True
304
+ - `save_on_each_node`: False
305
+ - `save_only_model`: False
306
+ - `restore_callback_states_from_checkpoint`: False
307
+ - `no_cuda`: False
308
+ - `use_cpu`: False
309
+ - `use_mps_device`: False
310
+ - `seed`: 42
311
+ - `data_seed`: None
312
+ - `jit_mode_eval`: False
313
+ - `use_ipex`: False
314
+ - `bf16`: False
315
+ - `fp16`: False
316
+ - `fp16_opt_level`: O1
317
+ - `half_precision_backend`: auto
318
+ - `bf16_full_eval`: False
319
+ - `fp16_full_eval`: False
320
+ - `tf32`: None
321
+ - `local_rank`: 0
322
+ - `ddp_backend`: None
323
+ - `tpu_num_cores`: None
324
+ - `tpu_metrics_debug`: False
325
+ - `debug`: []
326
+ - `dataloader_drop_last`: False
327
+ - `dataloader_num_workers`: 0
328
+ - `dataloader_prefetch_factor`: None
329
+ - `past_index`: -1
330
+ - `disable_tqdm`: False
331
+ - `remove_unused_columns`: True
332
+ - `label_names`: None
333
+ - `load_best_model_at_end`: False
334
+ - `ignore_data_skip`: False
335
+ - `fsdp`: []
336
+ - `fsdp_min_num_params`: 0
337
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
338
+ - `fsdp_transformer_layer_cls_to_wrap`: None
339
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
340
+ - `deepspeed`: None
341
+ - `label_smoothing_factor`: 0.0
342
+ - `optim`: adamw_torch
343
+ - `optim_args`: None
344
+ - `adafactor`: False
345
+ - `group_by_length`: False
346
+ - `length_column_name`: length
347
+ - `ddp_find_unused_parameters`: None
348
+ - `ddp_bucket_cap_mb`: None
349
+ - `ddp_broadcast_buffers`: False
350
+ - `dataloader_pin_memory`: True
351
+ - `dataloader_persistent_workers`: False
352
+ - `skip_memory_metrics`: True
353
+ - `use_legacy_prediction_loop`: False
354
+ - `push_to_hub`: False
355
+ - `resume_from_checkpoint`: None
356
+ - `hub_model_id`: None
357
+ - `hub_strategy`: every_save
358
+ - `hub_private_repo`: False
359
+ - `hub_always_push`: False
360
+ - `gradient_checkpointing`: False
361
+ - `gradient_checkpointing_kwargs`: None
362
+ - `include_inputs_for_metrics`: False
363
+ - `eval_do_concat_batches`: True
364
+ - `fp16_backend`: auto
365
+ - `push_to_hub_model_id`: None
366
+ - `push_to_hub_organization`: None
367
+ - `mp_parameters`:
368
+ - `auto_find_batch_size`: False
369
+ - `full_determinism`: False
370
+ - `torchdynamo`: None
371
+ - `ray_scope`: last
372
+ - `ddp_timeout`: 1800
373
+ - `torch_compile`: False
374
+ - `torch_compile_backend`: None
375
+ - `torch_compile_mode`: None
376
+ - `dispatch_batches`: None
377
+ - `split_batches`: None
378
+ - `include_tokens_per_second`: False
379
+ - `include_num_input_tokens_seen`: False
380
+ - `neftune_noise_alpha`: None
381
+ - `optim_target_modules`: None
382
+ - `batch_eval_metrics`: False
383
+ - `batch_sampler`: no_duplicates
384
+ - `multi_dataset_batch_sampler`: round_robin
385
+
386
+ </details>
387
+
388
+ ### Training Logs
389
+ | Epoch | Step | Training Loss | sts-dev_spearman_max |
390
+ |:------:|:----:|:-------------:|:--------------------:|
391
+ | 0.3434 | 500 | 0.4227 | - |
392
+ | 0.6868 | 1000 | 0.2996 | 0.8614 |
393
+ | 1.0007 | 1457 | - | 0.8696 |
394
+ | 1.0295 | 1500 | 0.2653 | - |
395
+ | 1.3729 | 2000 | 0.1352 | 0.8671 |
396
+ | 1.7163 | 2500 | 0.0866 | - |
397
+ | 2.0007 | 2914 | - | 0.8735 |
398
+ | 2.0591 | 3000 | 0.0671 | 0.8712 |
399
+ | 2.4025 | 3500 | 0.0387 | - |
400
+ | 2.7459 | 4000 | 0.0404 | 0.8746 |
401
+
402
+
403
+ ### Framework Versions
404
+ - Python: 3.11.9
405
+ - Sentence Transformers: 3.0.1
406
+ - Transformers: 4.41.2
407
+ - PyTorch: 2.2.2+cu121
408
+ - Accelerate: 0.31.0
409
+ - Datasets: 2.20.0
410
+ - Tokenizers: 0.19.1
411
+
412
+ ## Citation
413
+
414
+ ### BibTeX
415
+
416
+ #### Sentence Transformers
417
+ ```bibtex
418
+ @inproceedings{reimers-2019-sentence-bert,
419
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
420
+ author = "Reimers, Nils and Gurevych, Iryna",
421
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
422
+ month = "11",
423
+ year = "2019",
424
+ publisher = "Association for Computational Linguistics",
425
+ url = "https://arxiv.org/abs/1908.10084",
426
+ }
427
+ ```
428
+
429
+ #### MultipleNegativesRankingLoss
430
+ ```bibtex
431
+ @misc{henderson2017efficient,
432
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
433
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
434
+ year={2017},
435
+ eprint={1705.00652},
436
+ archivePrefix={arXiv},
437
+ primaryClass={cs.CL}
438
+ }
439
+ ```
440
+
441
+ <!--
442
+ ## Glossary
443
+
444
+ *Clearly define terms in order to be accessible across audiences.*
445
+ -->
446
+
447
+ <!--
448
+ ## Model Card Authors
449
+
450
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
451
+ -->
452
+
453
+ <!--
454
+ ## Model Card Contact
455
+
456
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
457
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "klue/roberta-base",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.41.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.2.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8aec6795a1e9d3564c35f795239002396b64feced26287b964f566610a2887da
3
+ size 442494816
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
similarity_evaluation_sts-test_results.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
2
+ -1,-1,0.84873348081561,0.854602998827759,0.8500538066493428,0.8519969471368808,0.8500441140633206,0.8520315199972409,0.8354683813598134,0.8317530170584335
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "model_max_length": 128,
52
+ "never_split": null,
53
+ "pad_token": "[PAD]",
54
+ "sep_token": "[SEP]",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "BertTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff