KYUNGHYUN9 commited on
Commit
fc3d85b
1 Parent(s): c5e304a

Upload 12 files

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,453 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: klue/roberta-base
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - pearson_cosine
8
+ - spearman_cosine
9
+ - pearson_manhattan
10
+ - spearman_manhattan
11
+ - pearson_euclidean
12
+ - spearman_euclidean
13
+ - pearson_dot
14
+ - spearman_dot
15
+ - pearson_max
16
+ - spearman_max
17
+ pipeline_tag: sentence-similarity
18
+ tags:
19
+ - sentence-transformers
20
+ - sentence-similarity
21
+ - feature-extraction
22
+ - generated_from_trainer
23
+ - dataset_size:574417
24
+ - loss:MultipleNegativesRankingLoss
25
+ - loss:CosineSimilarityLoss
26
+ widget:
27
+ - source_sentence: 이집트 대통령 선거에서 가까운 여론조사
28
+ sentences:
29
+ - 알 카에다 충돌, 폭발로 예멘에서 35명의 군인이 사망
30
+ - '보도자료 : 예멘 대통령 선거'
31
+ - 반 파이프에 스케이트보드를 신은 남자
32
+ - source_sentence: 한 소년이 팽창식 슬라이드를 내려간다.
33
+ sentences:
34
+ - 빨간 옷을 입은 소년이 부풀릴 수 있는 놀이기구를 타고 내려간다.
35
+ - 새들이 물속에서 헤엄치고 있다.
36
+ - 여자는 녹색 후추를 썰었다.
37
+ - source_sentence: 비상 차량들이 현장에 있다.
38
+ sentences:
39
+ - 구급차와 소방차가 현장에서 도움을 주려고 한다.
40
+ - 유물을 보는 사람들이 있다.
41
+ - 구급차와 소방차에 불이 붙었다.
42
+ - source_sentence: 그들은 서로 가까이 있지 않다.
43
+ sentences:
44
+ - 그 품질은 레이저에 가깝다.
45
+ - 그들은 샤토와 매우 가깝다.
46
+ - 그들은 샤토와 서로 어느 정도 떨어져 있다.
47
+ - source_sentence: 딱딱한 모자를 쓴 남자가 건물 프레임 앞에 주차된 빨간 트럭의 침대를 쳐다본다.
48
+ sentences:
49
+ - 남자가 자고 있다.
50
+ - 사람들이 말하고 있다.
51
+ - 한 남자가 트럭을 보고 있다.
52
+ model-index:
53
+ - name: SentenceTransformer based on klue/roberta-base
54
+ results:
55
+ - task:
56
+ type: semantic-similarity
57
+ name: Semantic Similarity
58
+ dataset:
59
+ name: sts dev
60
+ type: sts-dev
61
+ metrics:
62
+ - type: pearson_cosine
63
+ value: 0.8650328554572645
64
+ name: Pearson Cosine
65
+ - type: spearman_cosine
66
+ value: 0.8667952293243948
67
+ name: Spearman Cosine
68
+ - type: pearson_manhattan
69
+ value: 0.8558437246473041
70
+ name: Pearson Manhattan
71
+ - type: spearman_manhattan
72
+ value: 0.860673936504169
73
+ name: Spearman Manhattan
74
+ - type: pearson_euclidean
75
+ value: 0.8562228685196989
76
+ name: Pearson Euclidean
77
+ - type: spearman_euclidean
78
+ value: 0.8612884653822855
79
+ name: Spearman Euclidean
80
+ - type: pearson_dot
81
+ value: 0.830160661850442
82
+ name: Pearson Dot
83
+ - type: spearman_dot
84
+ value: 0.8275972106510755
85
+ name: Spearman Dot
86
+ - type: pearson_max
87
+ value: 0.8650328554572645
88
+ name: Pearson Max
89
+ - type: spearman_max
90
+ value: 0.8667952293243948
91
+ name: Spearman Max
92
+ ---
93
+
94
+ # SentenceTransformer based on klue/roberta-base
95
+
96
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [klue/roberta-base](https://huggingface.co/klue/roberta-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
97
+
98
+ ## Model Details
99
+
100
+ ### Model Description
101
+ - **Model Type:** Sentence Transformer
102
+ - **Base model:** [klue/roberta-base](https://huggingface.co/klue/roberta-base) <!-- at revision 02f94ba5e3fcb7e2a58a390b8639b0fac974a8da -->
103
+ - **Maximum Sequence Length:** 128 tokens
104
+ - **Output Dimensionality:** 768 tokens
105
+ - **Similarity Function:** Cosine Similarity
106
+ <!-- - **Training Dataset:** Unknown -->
107
+ <!-- - **Language:** Unknown -->
108
+ <!-- - **License:** Unknown -->
109
+
110
+ ### Model Sources
111
+
112
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
113
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
114
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
115
+
116
+ ### Full Model Architecture
117
+
118
+ ```
119
+ SentenceTransformer(
120
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel
121
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
122
+ )
123
+ ```
124
+
125
+ ## Usage
126
+
127
+ ### Direct Usage (Sentence Transformers)
128
+
129
+ First install the Sentence Transformers library:
130
+
131
+ ```bash
132
+ pip install -U sentence-transformers
133
+ ```
134
+
135
+ Then you can load this model and run inference.
136
+ ```python
137
+ from sentence_transformers import SentenceTransformer
138
+
139
+ # Download from the 🤗 Hub
140
+ model = SentenceTransformer("sentence_transformers_model_id")
141
+ # Run inference
142
+ sentences = [
143
+ '딱딱한 모자를 쓴 남자가 건물 프레임 앞에 주차된 빨간 트럭의 침대를 쳐다본다.',
144
+ '한 남자가 트럭을 보고 있다.',
145
+ '남자가 자고 있다.',
146
+ ]
147
+ embeddings = model.encode(sentences)
148
+ print(embeddings.shape)
149
+ # [3, 768]
150
+
151
+ # Get the similarity scores for the embeddings
152
+ similarities = model.similarity(embeddings, embeddings)
153
+ print(similarities.shape)
154
+ # [3, 3]
155
+ ```
156
+
157
+ <!--
158
+ ### Direct Usage (Transformers)
159
+
160
+ <details><summary>Click to see the direct usage in Transformers</summary>
161
+
162
+ </details>
163
+ -->
164
+
165
+ <!--
166
+ ### Downstream Usage (Sentence Transformers)
167
+
168
+ You can finetune this model on your own dataset.
169
+
170
+ <details><summary>Click to expand</summary>
171
+
172
+ </details>
173
+ -->
174
+
175
+ <!--
176
+ ### Out-of-Scope Use
177
+
178
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
179
+ -->
180
+
181
+ ## Evaluation
182
+
183
+ ### Metrics
184
+
185
+ #### Semantic Similarity
186
+ * Dataset: `sts-dev`
187
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
188
+
189
+ | Metric | Value |
190
+ |:-------------------|:-----------|
191
+ | pearson_cosine | 0.865 |
192
+ | spearman_cosine | 0.8668 |
193
+ | pearson_manhattan | 0.8558 |
194
+ | spearman_manhattan | 0.8607 |
195
+ | pearson_euclidean | 0.8562 |
196
+ | spearman_euclidean | 0.8613 |
197
+ | pearson_dot | 0.8302 |
198
+ | spearman_dot | 0.8276 |
199
+ | pearson_max | 0.865 |
200
+ | **spearman_max** | **0.8668** |
201
+
202
+ <!--
203
+ ## Bias, Risks and Limitations
204
+
205
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
206
+ -->
207
+
208
+ <!--
209
+ ### Recommendations
210
+
211
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
212
+ -->
213
+
214
+ ## Training Details
215
+
216
+ ### Training Datasets
217
+
218
+ #### Unnamed Dataset
219
+
220
+
221
+ * Size: 568,640 training samples
222
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>sentence_2</code>
223
+ * Approximate statistics based on the first 1000 samples:
224
+ | | sentence_0 | sentence_1 | sentence_2 |
225
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
226
+ | type | string | string | string |
227
+ | details | <ul><li>min: 4 tokens</li><li>mean: 19.21 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 18.29 tokens</li><li>max: 93 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.61 tokens</li><li>max: 57 tokens</li></ul> |
228
+ * Samples:
229
+ | sentence_0 | sentence_1 | sentence_2 |
230
+ |:----------------------------------------|:-------------------------------------------------|:--------------------------------------|
231
+ | <code>발생 부하가 함께 5% 적습니다.</code> | <code>발생 부하의 5% 감소와 함께 11.</code> | <code>발생 부하가 5% 증가합니다.</code> |
232
+ | <code>어떤 행사를 위해 음식과 옷을 배급하는 여성들.</code> | <code>여성들은 음식과 옷을 나눠줌으로써 난민들을 돕고 있다.</code> | <code>여자들이 사막에서 오토바이를 운전하고 있다.</code> |
233
+ | <code>어린 아이들은 그 지식을 얻을 필요가 있다.</code> | <code>응, 우리 젊은이들 중 많은 사람들이 그걸 배워야 할 것 같아.</code> | <code>젊은 사람들은 배울 필요가 없다.</code> |
234
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
235
+ ```json
236
+ {
237
+ "scale": 20.0,
238
+ "similarity_fct": "cos_sim"
239
+ }
240
+ ```
241
+
242
+ #### Unnamed Dataset
243
+
244
+
245
+ * Size: 5,777 training samples
246
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
247
+ * Approximate statistics based on the first 1000 samples:
248
+ | | sentence_0 | sentence_1 | label |
249
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
250
+ | type | string | string | float |
251
+ | details | <ul><li>min: 3 tokens</li><li>mean: 17.61 tokens</li><li>max: 65 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 17.66 tokens</li><li>max: 76 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
252
+ * Samples:
253
+ | sentence_0 | sentence_1 | label |
254
+ |:-----------------------------------------|:------------------------------------------|:--------------------------------|
255
+ | <code>몰디브 대통령이 경찰의 반란 이후 사임하고, 시위</code> | <code>몰디브 대통령이 몇 주 동안의 시위 끝에 그만두다.</code> | <code>0.6799999999999999</code> |
256
+ | <code>사자가 밀폐된 지역을 걷고 있다.</code> | <code>사자가 주위를 돌아다니고 있다.</code> | <code>0.52</code> |
257
+ | <code>한 소년이 노래를 부르고 피아노를 치고 있다.</code> | <code>한 소년이 피아노를 치고 있다.</code> | <code>0.6</code> |
258
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
259
+ ```json
260
+ {
261
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
262
+ }
263
+ ```
264
+
265
+ ### Training Hyperparameters
266
+ #### Non-Default Hyperparameters
267
+
268
+ - `eval_strategy`: steps
269
+ - `num_train_epochs`: 5
270
+ - `batch_sampler`: no_duplicates
271
+ - `multi_dataset_batch_sampler`: round_robin
272
+
273
+ #### All Hyperparameters
274
+ <details><summary>Click to expand</summary>
275
+
276
+ - `overwrite_output_dir`: False
277
+ - `do_predict`: False
278
+ - `eval_strategy`: steps
279
+ - `prediction_loss_only`: True
280
+ - `per_device_train_batch_size`: 8
281
+ - `per_device_eval_batch_size`: 8
282
+ - `per_gpu_train_batch_size`: None
283
+ - `per_gpu_eval_batch_size`: None
284
+ - `gradient_accumulation_steps`: 1
285
+ - `eval_accumulation_steps`: None
286
+ - `learning_rate`: 5e-05
287
+ - `weight_decay`: 0.0
288
+ - `adam_beta1`: 0.9
289
+ - `adam_beta2`: 0.999
290
+ - `adam_epsilon`: 1e-08
291
+ - `max_grad_norm`: 1
292
+ - `num_train_epochs`: 5
293
+ - `max_steps`: -1
294
+ - `lr_scheduler_type`: linear
295
+ - `lr_scheduler_kwargs`: {}
296
+ - `warmup_ratio`: 0.0
297
+ - `warmup_steps`: 0
298
+ - `log_level`: passive
299
+ - `log_level_replica`: warning
300
+ - `log_on_each_node`: True
301
+ - `logging_nan_inf_filter`: True
302
+ - `save_safetensors`: True
303
+ - `save_on_each_node`: False
304
+ - `save_only_model`: False
305
+ - `restore_callback_states_from_checkpoint`: False
306
+ - `no_cuda`: False
307
+ - `use_cpu`: False
308
+ - `use_mps_device`: False
309
+ - `seed`: 42
310
+ - `data_seed`: None
311
+ - `jit_mode_eval`: False
312
+ - `use_ipex`: False
313
+ - `bf16`: False
314
+ - `fp16`: False
315
+ - `fp16_opt_level`: O1
316
+ - `half_precision_backend`: auto
317
+ - `bf16_full_eval`: False
318
+ - `fp16_full_eval`: False
319
+ - `tf32`: None
320
+ - `local_rank`: 0
321
+ - `ddp_backend`: None
322
+ - `tpu_num_cores`: None
323
+ - `tpu_metrics_debug`: False
324
+ - `debug`: []
325
+ - `dataloader_drop_last`: False
326
+ - `dataloader_num_workers`: 0
327
+ - `dataloader_prefetch_factor`: None
328
+ - `past_index`: -1
329
+ - `disable_tqdm`: False
330
+ - `remove_unused_columns`: True
331
+ - `label_names`: None
332
+ - `load_best_model_at_end`: False
333
+ - `ignore_data_skip`: False
334
+ - `fsdp`: []
335
+ - `fsdp_min_num_params`: 0
336
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
337
+ - `fsdp_transformer_layer_cls_to_wrap`: None
338
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
339
+ - `deepspeed`: None
340
+ - `label_smoothing_factor`: 0.0
341
+ - `optim`: adamw_torch
342
+ - `optim_args`: None
343
+ - `adafactor`: False
344
+ - `group_by_length`: False
345
+ - `length_column_name`: length
346
+ - `ddp_find_unused_parameters`: None
347
+ - `ddp_bucket_cap_mb`: None
348
+ - `ddp_broadcast_buffers`: False
349
+ - `dataloader_pin_memory`: True
350
+ - `dataloader_persistent_workers`: False
351
+ - `skip_memory_metrics`: True
352
+ - `use_legacy_prediction_loop`: False
353
+ - `push_to_hub`: False
354
+ - `resume_from_checkpoint`: None
355
+ - `hub_model_id`: None
356
+ - `hub_strategy`: every_save
357
+ - `hub_private_repo`: False
358
+ - `hub_always_push`: False
359
+ - `gradient_checkpointing`: False
360
+ - `gradient_checkpointing_kwargs`: None
361
+ - `include_inputs_for_metrics`: False
362
+ - `eval_do_concat_batches`: True
363
+ - `fp16_backend`: auto
364
+ - `push_to_hub_model_id`: None
365
+ - `push_to_hub_organization`: None
366
+ - `mp_parameters`:
367
+ - `auto_find_batch_size`: False
368
+ - `full_determinism`: False
369
+ - `torchdynamo`: None
370
+ - `ray_scope`: last
371
+ - `ddp_timeout`: 1800
372
+ - `torch_compile`: False
373
+ - `torch_compile_backend`: None
374
+ - `torch_compile_mode`: None
375
+ - `dispatch_batches`: None
376
+ - `split_batches`: None
377
+ - `include_tokens_per_second`: False
378
+ - `include_num_input_tokens_seen`: False
379
+ - `neftune_noise_alpha`: None
380
+ - `optim_target_modules`: None
381
+ - `batch_eval_metrics`: False
382
+ - `batch_sampler`: no_duplicates
383
+ - `multi_dataset_batch_sampler`: round_robin
384
+
385
+ </details>
386
+
387
+ ### Training Logs
388
+ | Epoch | Step | Training Loss | sts-dev_spearman_max |
389
+ |:------:|:----:|:-------------:|:--------------------:|
390
+ | 0.3458 | 500 | 0.4123 | - |
391
+ | 0.6916 | 1000 | 0.3009 | 0.8365 |
392
+ | 1.0007 | 1447 | - | 0.8610 |
393
+ | 1.0367 | 1500 | 0.259 | - |
394
+ | 1.3824 | 2000 | 0.1301 | 0.8580 |
395
+ | 1.7282 | 2500 | 0.0898 | - |
396
+ | 2.0007 | 2894 | - | 0.8668 |
397
+
398
+
399
+ ### Framework Versions
400
+ - Python: 3.11.9
401
+ - Sentence Transformers: 3.0.1
402
+ - Transformers: 4.41.2
403
+ - PyTorch: 2.2.2+cu121
404
+ - Accelerate: 0.31.0
405
+ - Datasets: 2.20.0
406
+ - Tokenizers: 0.19.1
407
+
408
+ ## Citation
409
+
410
+ ### BibTeX
411
+
412
+ #### Sentence Transformers
413
+ ```bibtex
414
+ @inproceedings{reimers-2019-sentence-bert,
415
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
416
+ author = "Reimers, Nils and Gurevych, Iryna",
417
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
418
+ month = "11",
419
+ year = "2019",
420
+ publisher = "Association for Computational Linguistics",
421
+ url = "https://arxiv.org/abs/1908.10084",
422
+ }
423
+ ```
424
+
425
+ #### MultipleNegativesRankingLoss
426
+ ```bibtex
427
+ @misc{henderson2017efficient,
428
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
429
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
430
+ year={2017},
431
+ eprint={1705.00652},
432
+ archivePrefix={arXiv},
433
+ primaryClass={cs.CL}
434
+ }
435
+ ```
436
+
437
+ <!--
438
+ ## Glossary
439
+
440
+ *Clearly define terms in order to be accessible across audiences.*
441
+ -->
442
+
443
+ <!--
444
+ ## Model Card Authors
445
+
446
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
447
+ -->
448
+
449
+ <!--
450
+ ## Model Card Contact
451
+
452
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
453
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "klue/roberta-base",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.41.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.2.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cab277cadd32f6aa3e6f1f95ba3d4997031ec4fd78aa94e351ea64452dc971a6
3
+ size 442494816
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
similarity_evaluation_sts-test_results.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ epoch,steps,cosine_pearson,cosine_spearman,euclidean_pearson,euclidean_spearman,manhattan_pearson,manhattan_spearman,dot_pearson,dot_spearman
2
+ -1,-1,0.8245058602489089,0.8276291399671429,0.8203557990689467,0.8211538490919819,0.8200460173567082,0.821030497712816,0.790070815403237,0.7806963135562501
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "model_max_length": 128,
52
+ "never_split": null,
53
+ "pad_token": "[PAD]",
54
+ "sep_token": "[SEP]",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "BertTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff