--- base_model: - BioMistral/BioMistral-7B - mistralai/Mistral-7B-Instruct-v0.2 tags: - mergekit - merge license: apache-2.0 --- # Bio-Mistralv2-Squared-SLERP Bio-Mistralv2-Squared is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### 🤖💬 Models Merged The following models were included in the merge: * [BioMistral/BioMistral-7B](https://huggingface.co/BioMistral/BioMistral-7B) * [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) ### 🧩 Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: BioMistral/BioMistral-7B layer_range: [0, 32] - model: mistralai/Mistral-7B-Instruct-v0.2 layer_range: [0, 32] merge_method: slerp base_model: BioMistral/BioMistral-7B parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ### 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Kabster/Bio-Mistralv2-Squared" messages = [{"role": "user", "content": "What is fluimucil used for?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.2, top_k=100, top_p=0.95) print(outputs[0]["generated_text"]) ```