KaiquanMah commited on
Commit
cc3e92b
·
1 Parent(s): b6745b8

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1262.36 +/- 205.80
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d81e483a6f22b91352919cecb6a7b7856e6cb64d3200d22dd3b1eb77726dd57a
3
+ size 129248
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9c9b11dab0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9c9b11db40>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9c9b11dbd0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9c9b11dc60>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f9c9b11dcf0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9c9b11dd80>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9c9b11de10>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9c9b11dea0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f9c9b11df30>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9c9b11dfc0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9c9b11e050>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9c9b11e0e0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f9c9b119a40>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 2000000,
36
+ "_total_timesteps": 2000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1685695475476007738,
41
+ "learning_rate": 0.00096,
42
+ "tensorboard_log": null,
43
+ "lr_schedule": {
44
+ ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
46
+ },
47
+ "_last_obs": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADF+CD/WHWI/cEqtvBSxC0BViqY9o5qbPl+ZT79saH++tkOKP3JWxj/yaqe+i1+GPSPjjT/FazG+dRo8P1UziUAuXnm+kKaCvxIxN79K1b4/h+OpPvru1b5nriM/RbhLv0CHIT9jgADABZXkPiRlyL83b0u/yTg3vu0qDj/1T4a/yakPP3l5RT6L+8u9FKzYPltv3z5+yAa9wMYxv7D1jj4gVPe+MJSwPRmejD6ucq6+Ht6oP2h61rwt7fQ+5POJvV+zWr8ijlE9UeKHvsO9ib5AhyE/OgD/PnFaD8BZhCM/kF9kv4yYMj+Lvxg+WfOTPm0I2j7CEzq++tqBvcy6sb5kP04/8NcjP0OPu74jA5E+uhuPPl73LT1pMlk/JJ9/uzESUD97pri8SNMzP2fITz+EFWC/u0w0P45zc751ZYm/QIchPzoA/z4FleQ+WYQjP+ZGAT+dIAO/iC0RP650uT9fGAE/gZuQPmh/8r54IyW+K2KIP9GPm77G1Wy9Kg4WP1li+b5a3rW/lR1bPxuprr0j+Ek/fRZvv/cdEr/A2zs/Buk5vwvojj9345o+TVZNwECHIT9jgADABZXkPiRlyL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
+ },
51
+ "_last_episode_starts": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
54
+ },
55
+ "_last_original_obs": {
56
+ ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACltuc2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdzA4PQAAAADFW+m/AAAAALIiCz4AAAAArIzePwAAAAA+15U9AAAAAMLm3T8AAAAADPILvgAAAABbJAHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARsjQtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDuv7LwAAAAAl7L9vwAAAADh9PK9AAAAAMf/4T8AAAAAzdVBPQAAAABtVf0/AAAAAMBE5DwAAAAA3nXbvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFzymzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDMKnq9AAAAAJHR578AAAAAL16+PQAAAABQ+fA/AAAAAEj+zDwAAAAASpTmPwAAAADTl5K8AAAAADd93r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABT0422AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAASjwPQAAAAB0x+2/AAAAADDbMr0AAAAAOp/wPwAAAABZQQa+AAAAAGUu5z8AAAAAfbDwvQAAAAB8XADAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
+ },
59
+ "_episode_num": 0,
60
+ "use_sde": true,
61
+ "sde_sample_freq": -1,
62
+ "_current_progress_remaining": 0.0,
63
+ "_stats_window_size": 100,
64
+ "ep_info_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJD/c1Q66riMAWyUTegDjAF0lEdAqh7juc+aB3V9lChoBkdAkpdhaxHG0mgHTegDaAhHQKogToFmnO11fZQoaAZHQJisQ3Jgb6xoB03oA2gIR0CqJuUz0pVkdX2UKGgGR0CYjN7qY7aJaAdN6ANoCEdAqivcaVD8cnV9lChoBkdAmAFNDIBBA2gHTegDaAhHQKoufzdUKiR1fZQoaAZHQJfmt0nw5NpoB03oA2gIR0CqL+RSpBHDdX2UKGgGR0CUvc2fChvjaAdN6ANoCEdAqjUUfxMFlnV9lChoBkdAk6lWYKIBR2gHTegDaAhHQKo4Pu1F6Rh1fZQoaAZHQJYYE5eZ5RloB03oA2gIR0CqOnQX668QdX2UKGgGR0CSly74BV+7aAdN6ANoCEdAqjvWDzyz5XV9lChoBkdAkM9BacI7eWgHTegDaAhHQKpBHb0OEuh1fZQoaAZHQJToRj8UEgZoB03oA2gIR0CqRapvP1L8dX2UKGgGR0CTtRJ8v24/aAdN6ANoCEdAqkkoRsdkrnV9lChoBkdAlmjm8M/hVGgHTegDaAhHQKpLVnTy8SR1fZQoaAZHQJdh1iF0xM5oB03oA2gIR0CqULNliBoVdX2UKGgGR0CUnecry1/laAdN6ANoCEdAqlPhjWkJr3V9lChoBkdAmkFDBRAKOWgHTegDaAhHQKpWHy5qdpZ1fZQoaAZHQJJF/gqEvkBoB03oA2gIR0CqV4GLUCq7dX2UKGgGR0CS0zHxSYPYaAdN6ANoCEdAqlzAubqhUXV9lChoBkdAlc9Mq8UVSGgHTegDaAhHQKpgHO4XoDB1fZQoaAZHQJJfRU83dbhoB03oA2gIR0CqY1ynk1dgdX2UKGgGR0CS+cvcafjCaAdN6ANoCEdAqmWKL61stXV9lChoBkdAjviy3Td+HGgHTegDaAhHQKpscJ0GNaR1fZQoaAZHQJISYLux8lZoB03oA2gIR0Cqb59rwe/6dX2UKGgGR0CRP4VRk3CLaAdN6ANoCEdAqnHVEZzgdnV9lChoBkdAjiPBvrGBF2gHTegDaAhHQKpzN7AtWdV1fZQoaAZHQH8XjZ13dKxoB03oA2gIR0CqeIiD/VAidX2UKGgGR0CQ2xphnanKaAdN6ANoCEdAqnupKjBVMnV9lChoBkdAjfYUkWykbmgHTegDaAhHQKp9791EE1V1fZQoaAZHQJMqeasp5NZoB03oA2gIR0Cqf7yWAwwkdX2UKGgGR0CYNfbHZK4AaAdN6ANoCEdAqoegKBun/HV9lChoBkdAl4FIHoouw2gHTegDaAhHQKqLRGPPszF1fZQoaAZHQJHJBz0Yj0NoB03oA2gIR0CqjYUNBnjAdX2UKGgGR0CS/2d8iOebaAdN6ANoCEdAqo7yxPfsNXV9lChoBkdAk82SiZfD12gHTegDaAhHQKqUL1L8Jld1fZQoaAZHQJQTTB55Z8toB03oA2gIR0Cql1h/y5I6dX2UKGgGR0CW8RSCOFQEaAdN6ANoCEdAqpmUQ7LdN3V9lChoBkdAmkq619fCymgHTegDaAhHQKqbEFotcwB1fZQoaAZHQJg3A41gpjNoB03oA2gIR0CqochHbypadX2UKGgGR0CUwzfu1F6SaAdN6ANoCEdAqqa7CxeLN3V9lChoBkdAmzlY99tuUGgHTegDaAhHQKqpUgDA8CB1fZQoaAZHQJhVoyoGY8doB03oA2gIR0CqqrJtzjm0dX2UKGgGR0CRg1HnlnyvaAdN6ANoCEdAqq/3aWX1J3V9lChoBkdAiCGAHNX5nGgHTegDaAhHQKqzMq9XcQB1fZQoaAZHQImMpqwhW5poB03oA2gIR0CqtW3gDRtxdX2UKGgGR0CC0nrC3w1BaAdN6ANoCEdAqrbcsvqTr3V9lChoBkdAgo6PVmSQo2gHTegDaAhHQKq8gv24/eN1fZQoaAZHQHzQ7amGdqdoB03oA2gIR0CqwSalDWsjdX2UKGgGR0BuRWecx0uEaAdN6ANoCEdAqsSq42CNCXV9lChoBkdAcEWq7Ackt2gHTegDaAhHQKrGuSZBsyl1fZQoaAZHQHVv/x+az/poB03oA2gIR0CqzAAc94eLdX2UKGgGR0CLP0xiXpnpaAdN6ANoCEdAqs8t7D2rXHV9lChoBkdAjZDEiMYMv2gHTegDaAhHQKrRbreIl+p1fZQoaAZHQJIr29US7GxoB03oA2gIR0Cq0tK59Vm0dX2UKGgGR0CQJWpiqhlEaAdN6ANoCEdAqtgWRs/IKnV9lChoBkdAhHNHkLhJiGgHTegDaAhHQKrb3r9ETg51fZQoaAZHQJGoHFdcB2hoB03oA2gIR0Cq3xo6bONYdX2UKGgGR0CUK3VYp2ECaAdN6ANoCEdAquFK3RXwLHV9lChoBkdAkrL3GXHBDWgHTegDaAhHQKrn34TK1Xx1fZQoaAZHQJWLCbSZ0CBoB03oA2gIR0Cq6w09pyp8dX2UKGgGR0CRsLfZElVtaAdN6ANoCEdAqu1F6gM+eXV9lChoBkdAkCZwyVObiWgHTegDaAhHQKruuI55qud1fZQoaAZHQJPJEUnG829oB03oA2gIR0Cq8+W/ag27dX2UKGgGR0CUk9YjSofkaAdN6ANoCEdAqvcaX4TK1XV9lChoBkdAl4iEihWYGGgHTegDaAhHQKr5d9/BnBd1fZQoaAZHQJZUYgs9SuRoB03oA2gIR0Cq+3f+jua4dX2UKGgGR0CZUgGus90SaAdN6ANoCEdAqwODL0SRKnV9lChoBkdAnDDFMM7U5WgHTegDaAhHQKsGtRNRFZx1fZQoaAZHQJc5RW6shgVoB03oA2gIR0CrCOTdcjZ+dX2UKGgGR0CXsJsGPgejaAdN6ANoCEdAqwpAp2ECeXV9lChoBkdAl8dJj2BatGgHTegDaAhHQKsPZ4NZvDR1fZQoaAZHQJMdZxWDHwRoB03oA2gIR0CrEqGkFfRedX2UKGgGR0CVllfNiYsvaAdN6ANoCEdAqxTuvQnhKnV9lChoBkdAmL0R3eN1hmgHTegDaAhHQKsWVQb+98J1fZQoaAZHQJABQ4o7V8VoB03oA2gIR0CrHaGlyimEdX2UKGgGR0CDWeE2YOUdaAdN6ANoCEdAqyJ5V+7UX3V9lChoBkdAkTod+w1R+GgHTegDaAhHQKskugxJul51fZQoaAZHQJQbJOpKjBVoB03oA2gIR0CrJh1+I/JOdX2UKGgGR0CQWy00FbFCaAdN6ANoCEdAqytx26kIonV9lChoBkdAiVvVOCXhO2gHTegDaAhHQKsutoBaLXN1fZQoaAZHQI21Onl4keJoB03oA2gIR0CrMPVt4zJqdX2UKGgGR0CQ6h/j81n/aAdN6ANoCEdAqzJcm8dxQ3V9lChoBkdAkrY+cYqG12gHTegDaAhHQKs4K9vjwQV1fZQoaAZHQJSJQaaTfSBoB03oA2gIR0CrPORJ/XoUdX2UKGgGR0CUmS3Ehq0uaAdN6ANoCEdAq0BhTuOS4nV9lChoBkdAlCWwDRtxdmgHTegDaAhHQKtCGcbzbvh1fZQoaAZHQJtyArf+CK9oB03oA2gIR0CrR11TR6WxdX2UKGgGR0CWPhiHZbpvaAdN6ANoCEdAq0p8FOfukXV9lChoBkdAl2aEzwc5sGgHTegDaAhHQKtMt+EytV91fZQoaAZHQJJiQODrZ8NoB03oA2gIR0CrThwgs9SudX2UKGgGR0CV/mEc81XOaAdN6ANoCEdAq1NzmMfignV9lChoBkdAlIIB1HOKO2gHTegDaAhHQKtXSXKr7wd1fZQoaAZHQJafJAs052hoB03oA2gIR0CrWo1+RYA9dX2UKGgGR0CJOiiMYMvzaAdN6ANoCEdAq1y96w+t83V9lChoBkdAgtlz3yqdYmgHTegDaAhHQKtjCnVoYel1fZQoaAZHQI1ebIHTqjdoB03oA2gIR0CrZjPZ7HAAdX2UKGgGR0CUAUn5BTn8aAdN6ANoCEdAq2hkILPUrnV9lChoBkdAkO61ZgXuV2gHTegDaAhHQKtpxQTmGM51fZQoaAZHQI2aZiLEUCdoB03oA2gIR0CrbyPU8V59dX2UKGgGR0CXJp1PnB+GaAdN6ANoCEdAq3JhnUUfxXVlLg=="
67
+ },
68
+ "ep_success_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
+ },
72
+ "_n_updates": 62500,
73
+ "n_steps": 8,
74
+ "gamma": 0.99,
75
+ "gae_lambda": 0.9,
76
+ "ent_coef": 0.0,
77
+ "vf_coef": 0.4,
78
+ "max_grad_norm": 0.5,
79
+ "normalize_advantage": false,
80
+ "observation_space": {
81
+ ":type:": "<class 'gym.spaces.box.Box'>",
82
+ ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
83
+ "dtype": "float32",
84
+ "_shape": [
85
+ 28
86
+ ],
87
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
88
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
89
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
90
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
91
+ "_np_random": null
92
+ },
93
+ "action_space": {
94
+ ":type:": "<class 'gym.spaces.box.Box'>",
95
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
96
+ "dtype": "float32",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "bounded_below": "[ True True True True True True True True]",
103
+ "bounded_above": "[ True True True True True True True True]",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4
107
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02ca7ac4108118d15104018cf47670128628aac92e9146241d8d79fbeac9d24c
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a25417a022579b740052a870fb6c617349ba17e28d37d555a17b062170bf19e8
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9c9b11dab0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9c9b11db40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9c9b11dbd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9c9b11dc60>", "_build": "<function ActorCriticPolicy._build at 0x7f9c9b11dcf0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9c9b11dd80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9c9b11de10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9c9b11dea0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9c9b11df30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9c9b11dfc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9c9b11e050>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9c9b11e0e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9c9b119a40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685695475476007738, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADF+CD/WHWI/cEqtvBSxC0BViqY9o5qbPl+ZT79saH++tkOKP3JWxj/yaqe+i1+GPSPjjT/FazG+dRo8P1UziUAuXnm+kKaCvxIxN79K1b4/h+OpPvru1b5nriM/RbhLv0CHIT9jgADABZXkPiRlyL83b0u/yTg3vu0qDj/1T4a/yakPP3l5RT6L+8u9FKzYPltv3z5+yAa9wMYxv7D1jj4gVPe+MJSwPRmejD6ucq6+Ht6oP2h61rwt7fQ+5POJvV+zWr8ijlE9UeKHvsO9ib5AhyE/OgD/PnFaD8BZhCM/kF9kv4yYMj+Lvxg+WfOTPm0I2j7CEzq++tqBvcy6sb5kP04/8NcjP0OPu74jA5E+uhuPPl73LT1pMlk/JJ9/uzESUD97pri8SNMzP2fITz+EFWC/u0w0P45zc751ZYm/QIchPzoA/z4FleQ+WYQjP+ZGAT+dIAO/iC0RP650uT9fGAE/gZuQPmh/8r54IyW+K2KIP9GPm77G1Wy9Kg4WP1li+b5a3rW/lR1bPxuprr0j+Ek/fRZvv/cdEr/A2zs/Buk5vwvojj9345o+TVZNwECHIT9jgADABZXkPiRlyL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACltuc2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdzA4PQAAAADFW+m/AAAAALIiCz4AAAAArIzePwAAAAA+15U9AAAAAMLm3T8AAAAADPILvgAAAABbJAHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARsjQtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDuv7LwAAAAAl7L9vwAAAADh9PK9AAAAAMf/4T8AAAAAzdVBPQAAAABtVf0/AAAAAMBE5DwAAAAA3nXbvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAFzymzYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDMKnq9AAAAAJHR578AAAAAL16+PQAAAABQ+fA/AAAAAEj+zDwAAAAASpTmPwAAAADTl5K8AAAAADd93r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABT0422AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAASjwPQAAAAB0x+2/AAAAADDbMr0AAAAAOp/wPwAAAABZQQa+AAAAAGUu5z8AAAAAfbDwvQAAAAB8XADAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJD/c1Q66riMAWyUTegDjAF0lEdAqh7juc+aB3V9lChoBkdAkpdhaxHG0mgHTegDaAhHQKogToFmnO11fZQoaAZHQJisQ3Jgb6xoB03oA2gIR0CqJuUz0pVkdX2UKGgGR0CYjN7qY7aJaAdN6ANoCEdAqivcaVD8cnV9lChoBkdAmAFNDIBBA2gHTegDaAhHQKoufzdUKiR1fZQoaAZHQJfmt0nw5NpoB03oA2gIR0CqL+RSpBHDdX2UKGgGR0CUvc2fChvjaAdN6ANoCEdAqjUUfxMFlnV9lChoBkdAk6lWYKIBR2gHTegDaAhHQKo4Pu1F6Rh1fZQoaAZHQJYYE5eZ5RloB03oA2gIR0CqOnQX668QdX2UKGgGR0CSly74BV+7aAdN6ANoCEdAqjvWDzyz5XV9lChoBkdAkM9BacI7eWgHTegDaAhHQKpBHb0OEuh1fZQoaAZHQJToRj8UEgZoB03oA2gIR0CqRapvP1L8dX2UKGgGR0CTtRJ8v24/aAdN6ANoCEdAqkkoRsdkrnV9lChoBkdAlmjm8M/hVGgHTegDaAhHQKpLVnTy8SR1fZQoaAZHQJdh1iF0xM5oB03oA2gIR0CqULNliBoVdX2UKGgGR0CUnecry1/laAdN6ANoCEdAqlPhjWkJr3V9lChoBkdAmkFDBRAKOWgHTegDaAhHQKpWHy5qdpZ1fZQoaAZHQJJF/gqEvkBoB03oA2gIR0CqV4GLUCq7dX2UKGgGR0CS0zHxSYPYaAdN6ANoCEdAqlzAubqhUXV9lChoBkdAlc9Mq8UVSGgHTegDaAhHQKpgHO4XoDB1fZQoaAZHQJJfRU83dbhoB03oA2gIR0CqY1ynk1dgdX2UKGgGR0CS+cvcafjCaAdN6ANoCEdAqmWKL61stXV9lChoBkdAjviy3Td+HGgHTegDaAhHQKpscJ0GNaR1fZQoaAZHQJISYLux8lZoB03oA2gIR0Cqb59rwe/6dX2UKGgGR0CRP4VRk3CLaAdN6ANoCEdAqnHVEZzgdnV9lChoBkdAjiPBvrGBF2gHTegDaAhHQKpzN7AtWdV1fZQoaAZHQH8XjZ13dKxoB03oA2gIR0CqeIiD/VAidX2UKGgGR0CQ2xphnanKaAdN6ANoCEdAqnupKjBVMnV9lChoBkdAjfYUkWykbmgHTegDaAhHQKp9791EE1V1fZQoaAZHQJMqeasp5NZoB03oA2gIR0Cqf7yWAwwkdX2UKGgGR0CYNfbHZK4AaAdN6ANoCEdAqoegKBun/HV9lChoBkdAl4FIHoouw2gHTegDaAhHQKqLRGPPszF1fZQoaAZHQJHJBz0Yj0NoB03oA2gIR0CqjYUNBnjAdX2UKGgGR0CS/2d8iOebaAdN6ANoCEdAqo7yxPfsNXV9lChoBkdAk82SiZfD12gHTegDaAhHQKqUL1L8Jld1fZQoaAZHQJQTTB55Z8toB03oA2gIR0Cql1h/y5I6dX2UKGgGR0CW8RSCOFQEaAdN6ANoCEdAqpmUQ7LdN3V9lChoBkdAmkq619fCymgHTegDaAhHQKqbEFotcwB1fZQoaAZHQJg3A41gpjNoB03oA2gIR0CqochHbypadX2UKGgGR0CUwzfu1F6SaAdN6ANoCEdAqqa7CxeLN3V9lChoBkdAmzlY99tuUGgHTegDaAhHQKqpUgDA8CB1fZQoaAZHQJhVoyoGY8doB03oA2gIR0CqqrJtzjm0dX2UKGgGR0CRg1HnlnyvaAdN6ANoCEdAqq/3aWX1J3V9lChoBkdAiCGAHNX5nGgHTegDaAhHQKqzMq9XcQB1fZQoaAZHQImMpqwhW5poB03oA2gIR0CqtW3gDRtxdX2UKGgGR0CC0nrC3w1BaAdN6ANoCEdAqrbcsvqTr3V9lChoBkdAgo6PVmSQo2gHTegDaAhHQKq8gv24/eN1fZQoaAZHQHzQ7amGdqdoB03oA2gIR0CqwSalDWsjdX2UKGgGR0BuRWecx0uEaAdN6ANoCEdAqsSq42CNCXV9lChoBkdAcEWq7Ackt2gHTegDaAhHQKrGuSZBsyl1fZQoaAZHQHVv/x+az/poB03oA2gIR0CqzAAc94eLdX2UKGgGR0CLP0xiXpnpaAdN6ANoCEdAqs8t7D2rXHV9lChoBkdAjZDEiMYMv2gHTegDaAhHQKrRbreIl+p1fZQoaAZHQJIr29US7GxoB03oA2gIR0Cq0tK59Vm0dX2UKGgGR0CQJWpiqhlEaAdN6ANoCEdAqtgWRs/IKnV9lChoBkdAhHNHkLhJiGgHTegDaAhHQKrb3r9ETg51fZQoaAZHQJGoHFdcB2hoB03oA2gIR0Cq3xo6bONYdX2UKGgGR0CUK3VYp2ECaAdN6ANoCEdAquFK3RXwLHV9lChoBkdAkrL3GXHBDWgHTegDaAhHQKrn34TK1Xx1fZQoaAZHQJWLCbSZ0CBoB03oA2gIR0Cq6w09pyp8dX2UKGgGR0CRsLfZElVtaAdN6ANoCEdAqu1F6gM+eXV9lChoBkdAkCZwyVObiWgHTegDaAhHQKruuI55qud1fZQoaAZHQJPJEUnG829oB03oA2gIR0Cq8+W/ag27dX2UKGgGR0CUk9YjSofkaAdN6ANoCEdAqvcaX4TK1XV9lChoBkdAl4iEihWYGGgHTegDaAhHQKr5d9/BnBd1fZQoaAZHQJZUYgs9SuRoB03oA2gIR0Cq+3f+jua4dX2UKGgGR0CZUgGus90SaAdN6ANoCEdAqwODL0SRKnV9lChoBkdAnDDFMM7U5WgHTegDaAhHQKsGtRNRFZx1fZQoaAZHQJc5RW6shgVoB03oA2gIR0CrCOTdcjZ+dX2UKGgGR0CXsJsGPgejaAdN6ANoCEdAqwpAp2ECeXV9lChoBkdAl8dJj2BatGgHTegDaAhHQKsPZ4NZvDR1fZQoaAZHQJMdZxWDHwRoB03oA2gIR0CrEqGkFfRedX2UKGgGR0CVllfNiYsvaAdN6ANoCEdAqxTuvQnhKnV9lChoBkdAmL0R3eN1hmgHTegDaAhHQKsWVQb+98J1fZQoaAZHQJABQ4o7V8VoB03oA2gIR0CrHaGlyimEdX2UKGgGR0CDWeE2YOUdaAdN6ANoCEdAqyJ5V+7UX3V9lChoBkdAkTod+w1R+GgHTegDaAhHQKskugxJul51fZQoaAZHQJQbJOpKjBVoB03oA2gIR0CrJh1+I/JOdX2UKGgGR0CQWy00FbFCaAdN6ANoCEdAqytx26kIonV9lChoBkdAiVvVOCXhO2gHTegDaAhHQKsutoBaLXN1fZQoaAZHQI21Onl4keJoB03oA2gIR0CrMPVt4zJqdX2UKGgGR0CQ6h/j81n/aAdN6ANoCEdAqzJcm8dxQ3V9lChoBkdAkrY+cYqG12gHTegDaAhHQKs4K9vjwQV1fZQoaAZHQJSJQaaTfSBoB03oA2gIR0CrPORJ/XoUdX2UKGgGR0CUmS3Ehq0uaAdN6ANoCEdAq0BhTuOS4nV9lChoBkdAlCWwDRtxdmgHTegDaAhHQKtCGcbzbvh1fZQoaAZHQJtyArf+CK9oB03oA2gIR0CrR11TR6WxdX2UKGgGR0CWPhiHZbpvaAdN6ANoCEdAq0p8FOfukXV9lChoBkdAl2aEzwc5sGgHTegDaAhHQKtMt+EytV91fZQoaAZHQJJiQODrZ8NoB03oA2gIR0CrThwgs9SudX2UKGgGR0CV/mEc81XOaAdN6ANoCEdAq1NzmMfignV9lChoBkdAlIIB1HOKO2gHTegDaAhHQKtXSXKr7wd1fZQoaAZHQJafJAs052hoB03oA2gIR0CrWo1+RYA9dX2UKGgGR0CJOiiMYMvzaAdN6ANoCEdAq1y96w+t83V9lChoBkdAgtlz3yqdYmgHTegDaAhHQKtjCnVoYel1fZQoaAZHQI1ebIHTqjdoB03oA2gIR0CrZjPZ7HAAdX2UKGgGR0CUAUn5BTn8aAdN6ANoCEdAq2hkILPUrnV9lChoBkdAkO61ZgXuV2gHTegDaAhHQKtpxQTmGM51fZQoaAZHQI2aZiLEUCdoB03oA2gIR0CrbyPU8V59dX2UKGgGR0CXJp1PnB+GaAdN6ANoCEdAq3JhnUUfxXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (310 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1262.3644520407804, "std_reward": 205.7977450437911, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-02T09:57:53.900268"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c75854778143ca1b71a2003bce9477066ac34e80496603587fe45db84e7995b
3
+ size 2176