a2c-PandaReachDense-v2 / config.json
KaiquanMah's picture
Initial commit
3b9d5fd
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f38330a01f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f383309a000>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 5000000, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686016010658365117, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAejEjPyLso72Gkw4/ejEjPyLso72Gkw4/ejEjPyLso72Gkw4/ejEjPyLso72Gkw4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAZE2BvqU5Z7/3a88/dqDQv3knkr3UL2G/AWyvP5nTGL/onwo8vFiAvw0rmz9UArM9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB6MSM/IuyjvYaTDj+Knu08fngJvPYG7Dx6MSM/IuyjvYaTDj+Knu08fngJvPYG7Dx6MSM/IuyjvYaTDj+Knu08fngJvPYG7Dx6MSM/IuyjvYaTDj+Knu08fngJvPYG7DyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.6374737 -0.08004023 0.5569385 ]\n [ 0.6374737 -0.08004023 0.5569385 ]\n [ 0.6374737 -0.08004023 0.5569385 ]\n [ 0.6374737 -0.08004023 0.5569385 ]]", "desired_goal": "[[-0.25254357 -0.90322334 1.6204823 ]\n [-1.6298969 -0.07136435 -0.87963605]\n [ 1.3704835 -0.5969787 0.00846098]\n [-1.002708 1.2122513 0.08740678]]", "observation": "[[ 0.6374737 -0.08004023 0.5569385 0.02900626 -0.00839054 0.02881191]\n [ 0.6374737 -0.08004023 0.5569385 0.02900626 -0.00839054 0.02881191]\n [ 0.6374737 -0.08004023 0.5569385 0.02900626 -0.00839054 0.02881191]\n [ 0.6374737 -0.08004023 0.5569385 0.02900626 -0.00839054 0.02881191]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAn6OZvAdfN73sqIg8dvMXPokZkrzFNo8+9M/rPS7wQb1G9TU+7C8gvKU9lzyTSgA9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.01875478 -0.04476836 0.01668211]\n [ 0.14838967 -0.01783444 0.27971473]\n [ 0.11514273 -0.04734819 0.17769346]\n [-0.00977705 0.01846201 0.03132112]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGD+Ne/PTL8CUhpRSlIwBbJRLMowBdJRHQMP+7aunuRd1fZQoaAZoCWgPQwg0g/jAjl8awJSGlFKUaBVLMmgWR0DD/tKh6By0dX2UKGgGaAloD0MI7Q4pBkgUGMCUhpRSlGgVSzJoFkdAw/68POpsGnV9lChoBmgJaA9DCAXB49u7diLAlIaUUpRoFUsyaBZHQMP+prZ8KHB1fZQoaAZoCWgPQwgdA7LXu68dwJSGlFKUaBVLMmgWR0DD/xj349HMdX2UKGgGaAloD0MId6IkJNImGMCUhpRSlGgVSzJoFkdAw/796rNnoXV9lChoBmgJaA9DCKPMBplktBjAlIaUUpRoFUsyaBZHQMP+52joIOZ1fZQoaAZoCWgPQwhRaFn3j0UqwJSGlFKUaBVLMmgWR0DD/tH0RODbdX2UKGgGaAloD0MIbtv3qL8OGsCUhpRSlGgVSzJoFkdAw/9E0E5hjXV9lChoBmgJaA9DCOJ30y07dB/AlIaUUpRoFUsyaBZHQMP/KccMmWt1fZQoaAZoCWgPQwhViEfi5REgwJSGlFKUaBVLMmgWR0DD/xM9t/FzdX2UKGgGaAloD0MINrHAV3QbLcCUhpRSlGgVSzJoFkdAw/79t2LYPHV9lChoBmgJaA9DCBSwHYzYFxPAlIaUUpRoFUsyaBZHQMP/b9ovi991fZQoaAZoCWgPQwiqmiDqPrglwJSGlFKUaBVLMmgWR0DD/1T6xgRcdX2UKGgGaAloD0MI6SgHswkAIsCUhpRSlGgVSzJoFkdAw/8+cmShanV9lChoBmgJaA9DCNBCAkaXfyHAlIaUUpRoFUsyaBZHQMP/KO3c5811fZQoaAZoCWgPQwgZOnZQiYscwJSGlFKUaBVLMmgWR0DD/54W+GoKdX2UKGgGaAloD0MIJjrLLEIpJ8CUhpRSlGgVSzJoFkdAw/+DG+bmVHV9lChoBmgJaA9DCHqKHCJuLh3AlIaUUpRoFUsyaBZHQMP/bJDu0C11fZQoaAZoCWgPQwi6gQLv5DMdwJSGlFKUaBVLMmgWR0DD/1cJpnHvdX2UKGgGaAloD0MIat5xio7EGsCUhpRSlGgVSzJoFkdAw//Le2NNrXV9lChoBmgJaA9DCML2kzE+rB7AlIaUUpRoFUsyaBZHQMP/sIqLCN11fZQoaAZoCWgPQwiV7q6zIbclwJSGlFKUaBVLMmgWR0DD/5oCIUJwdX2UKGgGaAloD0MIopi8AWbOI8CUhpRSlGgVSzJoFkdAw/+Eef7Jn3V9lChoBmgJaA9DCFZI+Um1XyfAlIaUUpRoFUsyaBZHQMP/+XZf2K51fZQoaAZoCWgPQwgSM/s8RjkewJSGlFKUaBVLMmgWR0DD/95reqJedX2UKGgGaAloD0MIN8MN+PzoI8CUhpRSlGgVSzJoFkdAw//H4pMHr3V9lChoBmgJaA9DCMjrwaT40CfAlIaUUpRoFUsyaBZHQMP/smqPwNN1fZQoaAZoCWgPQwiqmiDqPqggwJSGlFKUaBVLMmgWR0DEAChvDP4VdX2UKGgGaAloD0MIB7Ezhc5bFsCUhpRSlGgVSzJoFkdAxAANc5bQkXV9lChoBmgJaA9DCHwnZr0YOh/AlIaUUpRoFUsyaBZHQMP/9wP7N0N1fZQoaAZoCWgPQwg7inPU0SEpwJSGlFKUaBVLMmgWR0DD/+GAf+0gdX2UKGgGaAloD0MIPnjt0oZjG8CUhpRSlGgVSzJoFkdAxABTY5DJEHV9lChoBmgJaA9DCIiFWtO80xjAlIaUUpRoFUsyaBZHQMQAOFfJFLF1fZQoaAZoCWgPQwgonrMFhBYcwJSGlFKUaBVLMmgWR0DEACHNHH3ldX2UKGgGaAloD0MIEyujkc+7GcCUhpRSlGgVSzJoFkdAxAAMTcIqsnV9lChoBmgJaA9DCCodrP9zsCDAlIaUUpRoFUsyaBZHQMQAfrBTGYN1fZQoaAZoCWgPQwhJTbuYZpocwJSGlFKUaBVLMmgWR0DEAGOlGgBcdX2UKGgGaAloD0MIEAh0Jm0KJsCUhpRSlGgVSzJoFkdAxABNI2fkFXV9lChoBmgJaA9DCCR7hJohRRfAlIaUUpRoFUsyaBZHQMQAN52IO6N1fZQoaAZoCWgPQwgW9rTDX4MfwJSGlFKUaBVLMmgWR0DEAKxHkLhKdX2UKGgGaAloD0MIrDlAMEd/JsCUhpRSlGgVSzJoFkdAxACRPJJXhnV9lChoBmgJaA9DCG5oyk4/MCHAlIaUUpRoFUsyaBZHQMQAerGipNt1fZQoaAZoCWgPQwirsBngghQkwJSGlFKUaBVLMmgWR0DEAGU4m1IAdX2UKGgGaAloD0MIwm1t4XlpEsCUhpRSlGgVSzJoFkdAxADbqk/KQ3V9lChoBmgJaA9DCMqkhjYASxvAlIaUUpRoFUsyaBZHQMQAwJ9iMHd1fZQoaAZoCWgPQwhSSZ2AJlIYwJSGlFKUaBVLMmgWR0DEAKojOcDsdX2UKGgGaAloD0MIStQLPs2JD8CUhpRSlGgVSzJoFkdAxACUvQF9r3V9lChoBmgJaA9DCL/TZMbbahHAlIaUUpRoFUsyaBZHQMQBCJVjqfR1fZQoaAZoCWgPQwjh0jHnGasewJSGlFKUaBVLMmgWR0DEAO2fGuLadX2UKGgGaAloD0MIYkm5+xyfKcCUhpRSlGgVSzJoFkdAxADXIkJKJ3V9lChoBmgJaA9DCDylg/V/Hh7AlIaUUpRoFUsyaBZHQMQAwZ3s5XF1fZQoaAZoCWgPQwjAWUqWk+giwJSGlFKUaBVLMmgWR0DEATTUXpGGdX2UKGgGaAloD0MIOC140VdAIcCUhpRSlGgVSzJoFkdAxAEZ1e0G/3V9lChoBmgJaA9DCGh3SDFAsh/AlIaUUpRoFUsyaBZHQMQBA0qH4491fZQoaAZoCWgPQwjus8pMaUUswJSGlFKUaBVLMmgWR0DEAO3A6+36dX2UKGgGaAloD0MIwf9WsmOjI8CUhpRSlGgVSzJoFkdAxAFhZ9NN8HV9lChoBmgJaA9DCKlQ3Vz8PSbAlIaUUpRoFUsyaBZHQMQBRl2V3Ux1fZQoaAZoCWgPQwjNOuP74lIfwJSGlFKUaBVLMmgWR0DEAS/UDuBudX2UKGgGaAloD0MIU14robukFsCUhpRSlGgVSzJoFkdAxAEaX9itrHV9lChoBmgJaA9DCEWEfxE07iXAlIaUUpRoFUsyaBZHQMQBkuIyj591fZQoaAZoCWgPQwiGx34WS7EewJSGlFKUaBVLMmgWR0DEAXfWnTAndX2UKGgGaAloD0MIyJbl6zKcIsCUhpRSlGgVSzJoFkdAxAFhTpgTiHV9lChoBmgJaA9DCHOc24R7dRPAlIaUUpRoFUsyaBZHQMQBS8Z1mrd1fZQoaAZoCWgPQwjIz0aum8IQwJSGlFKUaBVLMmgWR0DEAcE3bVSXdX2UKGgGaAloD0MIstXllIBgIMCUhpRSlGgVSzJoFkdAxAGmKpDNQnV9lChoBmgJaA9DCLth26LMriTAlIaUUpRoFUsyaBZHQMQBj7hvR7Z1fZQoaAZoCWgPQwhz8bc9QWIOwJSGlFKUaBVLMmgWR0DEAXpBZ6lddX2UKGgGaAloD0MIwOldvB8PIsCUhpRSlGgVSzJoFkdAxAHtyMkyDnV9lChoBmgJaA9DCNsy4Cwlyx3AlIaUUpRoFUsyaBZHQMQB0r+glGB1fZQoaAZoCWgPQwgzar5KPiYowJSGlFKUaBVLMmgWR0DEAbw02tMgdX2UKGgGaAloD0MIPJ8B9WaEJMCUhpRSlGgVSzJoFkdAxAGmroW56XV9lChoBmgJaA9DCNqOqbuyCx/AlIaUUpRoFUsyaBZHQMQCF2fbsWx1fZQoaAZoCWgPQwjhCb3+JK4jwJSGlFKUaBVLMmgWR0DEAfxbjcVQdX2UKGgGaAloD0MIg2kYPiJuIMCUhpRSlGgVSzJoFkdAxAHl9qDbrXV9lChoBmgJaA9DCHf1KjI68CXAlIaUUpRoFUsyaBZHQMQB0IQOFxp1fZQoaAZoCWgPQwjbwvNSsQEpwJSGlFKUaBVLMmgWR0DEAkXVPN3XdX2UKGgGaAloD0MII4PcRZjKJsCUhpRSlGgVSzJoFkdAxAIqygwoLHV9lChoBmgJaA9DCKwA323e+B/AlIaUUpRoFUsyaBZHQMQCFFpGnXN1fZQoaAZoCWgPQwgSaRt/osoqwJSGlFKUaBVLMmgWR0DEAf7U7Sy/dX2UKGgGaAloD0MIFasGYW73E8CUhpRSlGgVSzJoFkdAxAJ1IUahpXV9lChoBmgJaA9DCAlszsEzQR7AlIaUUpRoFUsyaBZHQMQCWhYV6/t1fZQoaAZoCWgPQwjIfECgM0kTwJSGlFKUaBVLMmgWR0DEAkOf9P1tdX2UKGgGaAloD0MIFHXmHhKGJcCUhpRSlGgVSzJoFkdAxAIuL1mJ33V9lChoBmgJaA9DCOFBs+veKiHAlIaUUpRoFUsyaBZHQMQCpAnlXBB1fZQoaAZoCWgPQwiztFNzubEcwJSGlFKUaBVLMmgWR0DEAoj/4qPPdX2UKGgGaAloD0MIVI1eDVDaH8CUhpRSlGgVSzJoFkdAxAJylImPYHV9lChoBmgJaA9DCPAxWHGq5SjAlIaUUpRoFUsyaBZHQMQCXQ/gR9R1fZQoaAZoCWgPQwgNjpJX59gWwJSGlFKUaBVLMmgWR0DEAtNGRV6vdX2UKGgGaAloD0MIZof4hy3tIMCUhpRSlGgVSzJoFkdAxAK4OsDGLnV9lChoBmgJaA9DCM/cQ8L3jhXAlIaUUpRoFUsyaBZHQMQCobKzRhN1fZQoaAZoCWgPQwhpjUEnhD4bwJSGlFKUaBVLMmgWR0DEAoxBsyi3dX2UKGgGaAloD0MITl/P1ywnHcCUhpRSlGgVSzJoFkdAxAL/0tAcDXV9lChoBmgJaA9DCIOnkCv1JCnAlIaUUpRoFUsyaBZHQMQC5NDc/MZ1fZQoaAZoCWgPQwiDpbqAl9kWwJSGlFKUaBVLMmgWR0DEAs5jSXt0dX2UKGgGaAloD0MICoZzDTMEG8CUhpRSlGgVSzJoFkdAxAK49jgAInV9lChoBmgJaA9DCHh8e9egXxPAlIaUUpRoFUsyaBZHQMQDLEv0yxl1fZQoaAZoCWgPQwgW3XpND0IjwJSGlFKUaBVLMmgWR0DEAxFBQemvdX2UKGgGaAloD0MIQFHZsKaCGcCUhpRSlGgVSzJoFkdAxAL6yAxzrHV9lChoBmgJaA9DCE/mH32TXiLAlIaUUpRoFUsyaBZHQMQC5UADJU51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 250000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}