adhisetiawan commited on
Commit
72bcc1a
1 Parent(s): 113939d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +41 -203
README.md CHANGED
@@ -8,219 +8,57 @@ tags:
8
  - text-generation-inference
9
  ---
10
 
11
- # Model Card for Model ID
 
12
 
13
- <!-- Provide a quick summary of what the model is/does. -->
 
14
 
 
 
 
15
 
 
16
 
17
- ## Model Details
 
 
 
 
 
 
18
 
19
- ### Model Description
20
 
21
- <!-- Provide a longer summary of what this model is. -->
22
 
 
 
23
 
24
 
25
- - **Developed by:** [More Information Needed]
26
- - **Funded by [optional]:** [More Information Needed]
27
- - **Shared by [optional]:** [More Information Needed]
28
- - **Model type:** [More Information Needed]
29
- - **Language(s) (NLP):** [More Information Needed]
30
- - **License:** [More Information Needed]
31
- - **Finetuned from model [optional]:** [More Information Needed]
32
 
33
- ### Model Sources [optional]
34
-
35
- <!-- Provide the basic links for the model. -->
36
-
37
- - **Repository:** [More Information Needed]
38
- - **Paper [optional]:** [More Information Needed]
39
- - **Demo [optional]:** [More Information Needed]
40
-
41
- ## Uses
42
-
43
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
44
-
45
- ###
46
- Direct Use
47
-
48
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
49
-
50
- [More Information Needed]
51
-
52
- ### Downstream Use [optional]
53
-
54
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
55
-
56
- [More Information Needed]
57
-
58
- ### Out-of-Scope Use
59
-
60
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
61
-
62
- [More Information Needed]
63
-
64
- ## Bias, Risks, and Limitations
65
-
66
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
67
-
68
- [More Information Needed]
69
-
70
- ### Recommendations
71
-
72
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
73
-
74
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
75
-
76
- ## How to Get Started with the Model
77
-
78
- Use the code below to get started with the model.
79
-
80
- [More Information Needed]
81
-
82
- ## Training Details
83
-
84
- ### Training Data
85
-
86
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
87
-
88
- [More Information Needed]
89
-
90
- ### Training Procedure
91
-
92
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
93
-
94
- #### Preprocessing [optional]
95
-
96
- [More Information Needed]
97
-
98
-
99
- #### Training Hyperparameters
100
-
101
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
102
-
103
- #### Speeds, Sizes, Times [optional]
104
-
105
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
106
-
107
- [More Information Needed]
108
 
109
  ## Evaluation
110
 
111
- <!-- This section describes the evaluation protocols and provides the results. -->
112
-
113
- ### Testing Data, Factors & Metrics
114
-
115
- #### Testing Data
116
-
117
- <!-- This should link to a Dataset Card if possible. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Factors
122
-
123
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
124
-
125
- [More Information Needed]
126
-
127
- #### Metrics
128
-
129
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
130
-
131
- [More Information Needed]
132
-
133
- ### Results
134
-
135
- [More Information Needed]
136
-
137
- #### Summary
138
-
139
-
140
-
141
- ## Model Examination [optional]
142
-
143
- <!-- Relevant interpretability work for the model goes here -->
144
-
145
- [More Information Needed]
146
-
147
- ## Environmental Impact
148
-
149
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
150
-
151
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
152
-
153
- - **Hardware Type:** [More Information Needed]
154
- - **Hours used:** [More Information Needed]
155
- - **Cloud Provider:** [More Information Needed]
156
- - **Compute Region:** [More Information Needed]
157
- - **Carbon Emitted:** [More Information Needed]
158
-
159
- ## Technical Specifications [optional]
160
-
161
- ### Model Architecture and Objective
162
-
163
- [More Information Needed]
164
-
165
- ### Compute Infrastructure
166
-
167
- [More Information Needed]
168
-
169
- #### Hardware
170
-
171
- [More Information Needed]
172
-
173
- #### Software
174
-
175
- [More Information Needed]
176
-
177
- ## Citation [optional]
178
-
179
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
180
-
181
- **BibTeX:**
182
-
183
- [More Information Needed]
184
-
185
- **APA:**
186
-
187
- [More Information Needed]
188
-
189
- ## Glossary [optional]
190
-
191
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
192
-
193
- [More Information Needed]
194
-
195
- ## More Information [optional]
196
-
197
- [More Information Needed]
198
-
199
- ## Model Card Authors [optional]
200
-
201
- [More Information Needed]
202
-
203
- ## Model Card Contact
204
-
205
- [More Information Needed]
206
-
207
-
208
- ## Training procedure
209
-
210
-
211
- The following `bitsandbytes` quantization config was used during training:
212
- - quant_method: bitsandbytes
213
- - load_in_8bit: True
214
- - load_in_4bit: False
215
- - llm_int8_threshold: 6.0
216
- - llm_int8_skip_modules: None
217
- - llm_int8_enable_fp32_cpu_offload: False
218
- - llm_int8_has_fp16_weight: False
219
- - bnb_4bit_quant_type: fp4
220
- - bnb_4bit_use_double_quant: False
221
- - bnb_4bit_compute_dtype: float32
222
-
223
- ### Framework versions
224
-
225
-
226
- - PEFT 0.6.2.dev0
 
8
  - text-generation-inference
9
  ---
10
 
11
+ # About :
12
+ AlpaRA 7B, a model for medical dialogue understanding. Fine-tuned using the Alpaca configuration on a curated 5,000-instruction dataset capturing nuances in patient-doctor conversations. Use Parameter Efficient Fine Tuning (PEFT) and Low Rank Adaptation (LoRA), make this model efficient on consumer-grade GPUs.
13
 
14
+ ## How to Use :
15
+ ## Load the Donkey model
16
 
17
+ ```python
18
+ from peft import PeftModel
19
+ from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
20
 
21
+ tokenizer = LlamaTokenizer.from_pretrained("yahma/llama-7b-hf")
22
 
23
+ model = LlamaForCausalLM.from_pretrained(
24
+ "yahma/llama-7b-hf",
25
+ load_in_8bit=True,
26
+ device_map="auto"
27
+ )
28
+ model = PeftModel.from_pretrained(model, "KalbeDigitalLab/alpara-7b-peft")
29
+ ```
30
 
31
+ ## Prompt Template :
32
 
33
+ Feel free to change the instruction
34
 
35
+ ```python
36
+ PROMPT = """Below is an instruction that describes a task. Write a response that appropriately completes the request.
37
 
38
 
39
+ ### Instruction:
40
+ "how to cure flu?"
 
 
 
 
 
41
 
42
+ ### Response:"""
43
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
 
45
  ## Evaluation
46
 
47
+ ```python
48
+ inputs = tokenizer(
49
+ PROMPT,
50
+ return_tensors="pt"
51
+ )
52
+ input_ids = inputs["input_ids"].cuda()
53
+
54
+ print("Generating...")
55
+ generation_output = model.generate(
56
+ input_ids=input_ids,
57
+ return_dict_in_generate=True,
58
+ output_scores=True,
59
+ max_new_tokens=512,
60
+ )
61
+ for s in generation_output.sequences:
62
+ result = tokenizer.decode(s).split("### Response:")[1]
63
+ print(result)
64
+ ```