File size: 1,817 Bytes
8a1d0ea
 
 
 
 
9b817e5
8a1d0ea
9b817e5
 
 
 
5c21bcd
9b817e5
8a1d0ea
 
 
 
9b817e5
8a1d0ea
2f77028
8a1d0ea
62c8d34
 
d012667
62c8d34
 
 
8a1d0ea
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
---
tags:
- vision
- image-classification
datasets:
- Kaludi/data-food-classification
widget:
- src: https://kristineskitchenblog.com/wp-content/uploads/2021/04/apple-pie-1200-square-592-2.jpg
  example_title: Apple Pie
- src: https://upload.wikimedia.org/wikipedia/commons/d/da/Strawberry_ice_cream_cone_%285076899310%29.jpg
  example_title: Ice Cream
- src: https://cdn.britannica.com/52/128652-050-14AD19CA/Maki-zushi.jpg
  example_title: Sushi
co2_eq_emissions:
  emissions: 2.7745203231331614
---

# Food Classification

This is a Food Image Classifier model that has been trained by [Kaludi](https://huggingface.co/Kaludi) to recognize 7 different types of popular foods, including **apple pie**, **falafel**, **french toast**, **ice cream**, **ramen**, **sushi**, and **tiramisu**. It can accurately classify an image of food into one of these categories by analyzing its visual features. This model can be used by food bloggers, restaurants, and recipe websites to quickly categorize and sort their food images, making it easier to manage their content and provide a better user experience.

### Gradio

Tis model supports a [Gradio](https://github.com/gradio-app/gradio) Web UI to run the data-food-classification model:
[![Open In HF Spaces](https://camo.githubusercontent.com/00380c35e60d6b04be65d3d94a58332be5cc93779f630bcdfc18ab9a3a7d3388/68747470733a2f2f696d672e736869656c64732e696f2f62616467652f25463025394625413425393725323048756767696e67253230466163652d5370616365732d626c7565)](https://huggingface.co/spaces/Kaludi/Food-Classification_App)


## Validation Metrics

- Loss: 0.094
- Accuracy: 0.977
- Macro F1: 0.977
- Micro F1: 0.977
- Weighted F1: 0.977
- Macro Precision: 0.978
- Micro Precision: 0.977
- Weighted Precision: 0.978
- Macro Recall: 0.977
- Micro Recall: 0.977
- Weighted Recall: 0.977