File size: 1,969 Bytes
0ee0ad8
bdac67c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ee0ad8
 
bdac67c
 
0ee0ad8
bdac67c
0ee0ad8
bdac67c
 
 
 
0ee0ad8
bdac67c
0ee0ad8
bdac67c
0ee0ad8
bdac67c
0ee0ad8
bdac67c
0ee0ad8
bdac67c
0ee0ad8
bdac67c
0ee0ad8
bdac67c
0ee0ad8
bdac67c
0ee0ad8
bdac67c
 
 
 
 
 
 
 
 
 
0ee0ad8
bdac67c
0ee0ad8
bdac67c
 
 
 
 
 
0ee0ad8
 
bdac67c
0ee0ad8
bdac67c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- generated_from_trainer
datasets:
- common_voice_6_1
metrics:
- wer
model-index:
- name: wav2vec2-large-mms-1b-turkish-colab
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: common_voice_6_1
      type: common_voice_6_1
      config: tr
      split: test
      args: tr
    metrics:
    - name: Wer
      type: wer
      value: 0.22030436114799307
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-mms-1b-turkish-colab

This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on the common_voice_6_1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1538
- Wer: 0.2203

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 4
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.6379        | 0.92  | 100  | 0.1794          | 0.2436 |
| 0.2808        | 1.83  | 200  | 0.1671          | 0.2387 |
| 0.2646        | 2.75  | 300  | 0.1606          | 0.2228 |
| 0.2413        | 3.67  | 400  | 0.1538          | 0.2203 |


### Framework versions

- Transformers 4.39.0.dev0
- Pytorch 2.2.0+cu121
- Datasets 2.17.1
- Tokenizers 0.15.2