File size: 2,038 Bytes
0e4cf95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: flan-t5-large-reaction-extraction
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# flan-t5-large-reaction-extraction

This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8736
- Rouge1: 34.4249
- Rouge2: 21.4943
- Rougel: 33.4902
- Rougelsum: 33.466
- Gen Len: 28.1622

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 1.0236        | 1.0   | 2885  | 0.9221          | 24.983  | 14.6971 | 24.5305 | 24.5497   | 42.0762 |
| 0.8177        | 2.0   | 5771  | 0.8503          | 30.0616 | 18.1568 | 29.5486 | 29.5537   | 35.5198 |
| 0.6784        | 3.0   | 8657  | 0.8324          | 32.537  | 20.2178 | 31.7925 | 31.75     | 27.7862 |
| 0.5961        | 4.0   | 11543 | 0.8330          | 32.9769 | 20.8184 | 32.2179 | 32.2036   | 33.6372 |
| 0.4985        | 5.0   | 14425 | 0.8736          | 34.4249 | 21.4943 | 33.4902 | 33.466    | 28.1622 |


### Framework versions

- Transformers 4.28.1
- Pytorch 2.0.0+cu117
- Datasets 2.6.1
- Tokenizers 0.13.3