File size: 2,038 Bytes
0e4cf95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: flan-t5-large-reaction-extraction
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# flan-t5-large-reaction-extraction
This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8736
- Rouge1: 34.4249
- Rouge2: 21.4943
- Rougel: 33.4902
- Rougelsum: 33.466
- Gen Len: 28.1622
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 1.0236 | 1.0 | 2885 | 0.9221 | 24.983 | 14.6971 | 24.5305 | 24.5497 | 42.0762 |
| 0.8177 | 2.0 | 5771 | 0.8503 | 30.0616 | 18.1568 | 29.5486 | 29.5537 | 35.5198 |
| 0.6784 | 3.0 | 8657 | 0.8324 | 32.537 | 20.2178 | 31.7925 | 31.75 | 27.7862 |
| 0.5961 | 4.0 | 11543 | 0.8330 | 32.9769 | 20.8184 | 32.2179 | 32.2036 | 33.6372 |
| 0.4985 | 5.0 | 14425 | 0.8736 | 34.4249 | 21.4943 | 33.4902 | 33.466 | 28.1622 |
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu117
- Datasets 2.6.1
- Tokenizers 0.13.3
|