--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: Har_Finetuned-ViT-Hybrid_ results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder config: har split: train args: har metrics: - name: Accuracy type: accuracy value: 0.8978835978835978 --- # Har_Finetuned-ViT-Hybrid_ This model is a fine-tuned version of [google/vit-hybrid-base-bit-384](https://huggingface.co/google/vit-hybrid-base-bit-384) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.3216 - Accuracy: 0.8979 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 6 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7647 | 1.0 | 167 | 0.4917 | 0.8550 | | 0.6376 | 2.0 | 334 | 0.3634 | 0.8820 | | 0.5051 | 3.0 | 501 | 0.3346 | 0.8915 | | 0.3472 | 4.0 | 668 | 0.3280 | 0.8979 | | 0.2982 | 5.0 | 835 | 0.3252 | 0.8984 | | 0.319 | 6.0 | 1002 | 0.3216 | 0.8979 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.0 - Datasets 2.1.0 - Tokenizers 0.13.2