--- license: apache-2.0 base_model: KasuleTrevor/wav2vec2-large-xls-r-300m-lg-cv-130hr-v1 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: multilingual_speech_to_intent_wav2vec_xlsr results: [] --- # multilingual_speech_to_intent_wav2vec_xlsr This model is a fine-tuned version of [KasuleTrevor/wav2vec2-large-xls-r-300m-lg-cv-130hr-v1](https://huggingface.co/KasuleTrevor/wav2vec2-large-xls-r-300m-lg-cv-130hr-v1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1493 - Accuracy: 0.9804 - Precision: 0.9813 - Recall: 0.9804 - F1: 0.9805 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.65 | 1.0 | 219 | 0.1235 | 0.9795 | 0.9799 | 0.9795 | 0.9795 | | 0.2315 | 2.0 | 438 | 0.1033 | 0.9851 | 0.9854 | 0.9851 | 0.9852 | | 0.2355 | 3.0 | 657 | 0.1331 | 0.9724 | 0.9740 | 0.9724 | 0.9724 | | 0.1943 | 4.0 | 876 | 0.2951 | 0.9250 | 0.9304 | 0.9250 | 0.9245 | | 0.1854 | 5.0 | 1095 | 0.5676 | 0.8931 | 0.9056 | 0.8931 | 0.8925 | | 0.1499 | 6.0 | 1314 | 0.3552 | 0.9243 | 0.9344 | 0.9243 | 0.9240 | | 0.1461 | 7.0 | 1533 | 0.2503 | 0.9441 | 0.9492 | 0.9441 | 0.9442 | | 0.1407 | 8.0 | 1752 | 0.2951 | 0.9214 | 0.9269 | 0.9214 | 0.9212 | | 0.116 | 9.0 | 1971 | 0.3022 | 0.9391 | 0.9425 | 0.9391 | 0.9390 | | 0.1142 | 10.0 | 2190 | 0.2169 | 0.9483 | 0.9526 | 0.9483 | 0.9483 | | 0.1064 | 11.0 | 2409 | 0.5370 | 0.9115 | 0.9171 | 0.9115 | 0.9111 | | 0.1067 | 12.0 | 2628 | 1.1525 | 0.8259 | 0.8471 | 0.8259 | 0.8266 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.1.0+cu118 - Datasets 2.20.0 - Tokenizers 0.19.1