File size: 3,823 Bytes
7e2f0a7
07ad222
 
 
 
 
 
 
 
 
7e2f0a7
 
07ad222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-large-xls-r-300m-lg-cv-130hr-v1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/asr-africa-research-team/ASR%20Africa/runs/zui44xp5)
# wav2vec2-large-xls-r-300m-lg-cv-130hr-v1

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4019
- Wer: 0.2092
- Cer: 0.0456

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step   | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:------:|:---------------:|:------:|:------:|
| 0.7325        | 1.0   | 5194   | 0.2760          | 0.3441 | 0.0731 |
| 0.2056        | 2.0   | 10388  | 0.2507          | 0.2835 | 0.0629 |
| 0.1744        | 3.0   | 15582  | 0.2414          | 0.2721 | 0.0605 |
| 0.155         | 4.0   | 20776  | 0.2359          | 0.2618 | 0.0584 |
| 0.143         | 5.0   | 25970  | 0.2354          | 0.2577 | 0.0575 |
| 0.131         | 6.0   | 31164  | 0.2400          | 0.2551 | 0.0570 |
| 0.1208        | 7.0   | 36358  | 0.2460          | 0.2482 | 0.0555 |
| 0.1102        | 8.0   | 41552  | 0.2553          | 0.2439 | 0.0548 |
| 0.1001        | 9.0   | 46746  | 0.2441          | 0.2455 | 0.0547 |
| 0.0898        | 10.0  | 51940  | 0.2463          | 0.2423 | 0.0543 |
| 0.0795        | 11.0  | 57134  | 0.2577          | 0.2400 | 0.0528 |
| 0.0701        | 12.0  | 62328  | 0.2677          | 0.2374 | 0.0522 |
| 0.0609        | 13.0  | 67522  | 0.2741          | 0.2405 | 0.0527 |
| 0.0538        | 14.0  | 72716  | 0.2933          | 0.2396 | 0.0523 |
| 0.0471        | 15.0  | 77910  | 0.3096          | 0.2352 | 0.0517 |
| 0.0416        | 16.0  | 83104  | 0.3165          | 0.2311 | 0.0503 |
| 0.0374        | 17.0  | 88298  | 0.3294          | 0.2328 | 0.0505 |
| 0.0335        | 18.0  | 93492  | 0.3414          | 0.2325 | 0.0501 |
| 0.0301        | 19.0  | 98686  | 0.3379          | 0.2255 | 0.0487 |
| 0.0276        | 20.0  | 103880 | 0.3578          | 0.2220 | 0.0482 |
| 0.0253        | 21.0  | 109074 | 0.3701          | 0.2181 | 0.0476 |
| 0.0236        | 22.0  | 114268 | 0.3769          | 0.2181 | 0.0474 |
| 0.0217        | 23.0  | 119462 | 0.3808          | 0.2155 | 0.0470 |
| 0.0204        | 24.0  | 124656 | 0.3917          | 0.2124 | 0.0464 |
| 0.0193        | 25.0  | 129850 | 0.3963          | 0.2110 | 0.0459 |
| 0.0184        | 26.0  | 135044 | 0.3956          | 0.2111 | 0.0458 |
| 0.0174        | 27.0  | 140238 | 0.4046          | 0.2109 | 0.0459 |
| 0.0174        | 28.0  | 145432 | 0.3997          | 0.2096 | 0.0457 |
| 0.0169        | 29.0  | 150626 | 0.4014          | 0.2093 | 0.0456 |
| 0.0171        | 30.0  | 155820 | 0.4019          | 0.2092 | 0.0456 |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.2.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1