--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer datasets: - common_voice_8_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-sw-1hr-v1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_8_0 type: common_voice_8_0 config: sw split: test args: sw metrics: - name: Wer type: wer value: 0.5901667526216263 --- # wav2vec2-large-xls-r-300m-sw-1hr-v1 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_8_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.8004 - Wer: 0.5902 - Cer: 0.1498 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 60 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-------:|:----:|:---------------:|:------:|:------:| | 10.7706 | 4.6512 | 100 | 5.0262 | 1.0 | 1.0 | | 3.7038 | 9.3023 | 200 | 3.2132 | 1.0 | 1.0 | | 2.9571 | 13.9535 | 300 | 2.8597 | 1.0 | 1.0 | | 2.7859 | 18.6047 | 400 | 2.6007 | 1.0 | 0.7810 | | 1.2103 | 23.2558 | 500 | 0.8662 | 0.6976 | 0.1859 | | 0.3075 | 27.9070 | 600 | 0.7534 | 0.6533 | 0.1695 | | 0.1911 | 32.5581 | 700 | 0.7585 | 0.6282 | 0.1607 | | 0.1482 | 37.2093 | 800 | 0.8062 | 0.6340 | 0.1667 | | 0.1241 | 41.8605 | 900 | 0.7999 | 0.6190 | 0.1605 | | 0.1085 | 46.5116 | 1000 | 0.8105 | 0.6001 | 0.1524 | | 0.0935 | 51.1628 | 1100 | 0.7972 | 0.5914 | 0.1502 | | 0.0833 | 55.8140 | 1200 | 0.7978 | 0.5931 | 0.1505 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1