--- library_name: transformers language: - sw license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - DigitalUmuganda/AfriVoice metrics: - wer model-index: - name: Whisper Small Hi - Sanchit Gandhi results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: AfriVoice type: DigitalUmuganda/AfriVoice args: 'config: sw, split: test' metrics: - name: Wer type: wer value: 35.83130951004202 --- # Whisper Small Hi - Sanchit Gandhi This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the AfriVoice dataset. It achieves the following results on the evaluation set: - Loss: 0.8767 - Wer: 35.8313 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.0665 | 8.1633 | 1000 | 0.7047 | 36.8683 | | 0.0023 | 16.3265 | 2000 | 0.8767 | 35.8313 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.1.0+cu118 - Datasets 2.21.0 - Tokenizers 0.19.1