completo
Browse files
app.py
CHANGED
@@ -11,6 +11,7 @@ class ModelHandler:
|
|
11 |
def __init__(self, model_names, token):
|
12 |
self.clients = {model_key: InferenceClient(model_name, token=token) for model_key, model_name in model_names.items()}
|
13 |
self.current_model = list(model_names.keys())[0]
|
|
|
14 |
|
15 |
def switch_model(self, model_key):
|
16 |
if model_key in self.clients:
|
@@ -19,18 +20,47 @@ class ModelHandler:
|
|
19 |
raise ValueError(f"Modelo {model_key} no est谩 disponible.")
|
20 |
|
21 |
def generate_response(self, input_text):
|
22 |
-
|
|
|
|
|
|
|
23 |
try:
|
24 |
messages = [{"role": "user", "content": prompt}]
|
25 |
client = self.clients[self.current_model]
|
26 |
response = client.chat_completion(messages=messages, max_tokens=500)
|
27 |
if hasattr(response, 'choices') and response.choices:
|
28 |
-
|
|
|
|
|
29 |
else:
|
30 |
return str(response)
|
31 |
except Exception as e:
|
32 |
return f"Error al realizar la inferencia: {e}"
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
# Lista de modelos disponibles (con nombres amigables para la interfaz)
|
35 |
model_names = {
|
36 |
"CHATBOT": "microsoft/Phi-3-mini-4k-instruct"
|
@@ -41,9 +71,6 @@ model_handler = ModelHandler(model_names, hf_token)
|
|
41 |
|
42 |
# Define la funci贸n para generaci贸n de im谩genes con progreso
|
43 |
def generate_image_with_progress(prompt):
|
44 |
-
"""
|
45 |
-
Genera una imagen utilizando el modelo de "stabilityai/stable-diffusion-2" y muestra un progreso.
|
46 |
-
"""
|
47 |
try:
|
48 |
client = InferenceClient("stabilityai/stable-diffusion-2", token=hf_token)
|
49 |
|
@@ -58,17 +85,16 @@ def generate_image_with_progress(prompt):
|
|
58 |
yield f"Error al generar la imagen: {e}", None
|
59 |
|
60 |
# Configura la interfaz en Gradio con selecci贸n de modelos y generaci贸n de im谩genes
|
61 |
-
with gr.Blocks(title="Multi-Model LLM Chatbot with Image Generation") as demo:
|
62 |
gr.Markdown(
|
63 |
"""
|
64 |
-
## Chatbot Multi-Modelo LLM con Generaci贸n de Im谩genes
|
65 |
-
Este chatbot permite elegir entre m煤ltiples modelos de lenguaje para responder preguntas o
|
66 |
-
a partir de descripciones.
|
67 |
"""
|
68 |
)
|
69 |
with gr.Row():
|
70 |
model_dropdown = gr.Dropdown(
|
71 |
-
choices=list(model_names.keys()) + ["Generaci贸n de Im谩genes"],
|
72 |
value="CHATBOT",
|
73 |
label="Seleccionar Acci贸n/Modelo",
|
74 |
interactive=True
|
@@ -91,12 +117,11 @@ with gr.Blocks(title="Multi-Model LLM Chatbot with Image Generation") as demo:
|
|
91 |
interactive=False
|
92 |
)
|
93 |
submit_button = gr.Button("Enviar")
|
94 |
-
|
95 |
# Define la funci贸n de actualizaci贸n
|
96 |
def process_input(selected_action, user_input):
|
97 |
try:
|
98 |
if selected_action == "Generaci贸n de Im谩genes":
|
99 |
-
# Manejamos el generador de progreso
|
100 |
progress_generator = generate_image_with_progress(user_input)
|
101 |
last_status = None
|
102 |
last_image = None
|
@@ -104,13 +129,16 @@ with gr.Blocks(title="Multi-Model LLM Chatbot with Image Generation") as demo:
|
|
104 |
last_status = status
|
105 |
last_image = image
|
106 |
return last_status, last_image
|
|
|
|
|
|
|
107 |
else:
|
108 |
model_handler.switch_model(selected_action)
|
109 |
response = model_handler.generate_response(user_input)
|
110 |
return response, None
|
111 |
except Exception as e:
|
112 |
return f"Error: {e}", None
|
113 |
-
|
114 |
# Conecta la funci贸n a los componentes
|
115 |
submit_button.click(
|
116 |
fn=process_input,
|
@@ -119,4 +147,4 @@ with gr.Blocks(title="Multi-Model LLM Chatbot with Image Generation") as demo:
|
|
119 |
)
|
120 |
|
121 |
# Lanza la interfaz
|
122 |
-
demo.launch()
|
|
|
11 |
def __init__(self, model_names, token):
|
12 |
self.clients = {model_key: InferenceClient(model_name, token=token) for model_key, model_name in model_names.items()}
|
13 |
self.current_model = list(model_names.keys())[0]
|
14 |
+
self.conversation_history = [] # Memoria de conversaci贸n
|
15 |
|
16 |
def switch_model(self, model_key):
|
17 |
if model_key in self.clients:
|
|
|
20 |
raise ValueError(f"Modelo {model_key} no est谩 disponible.")
|
21 |
|
22 |
def generate_response(self, input_text):
|
23 |
+
# Agrega el historial de la conversaci贸n al prompt
|
24 |
+
self.conversation_history.append({"role": "user", "content": input_text})
|
25 |
+
prompt = f"Historial de conversaci贸n: {self.conversation_history}\nPregunta: {input_text}"
|
26 |
+
|
27 |
try:
|
28 |
messages = [{"role": "user", "content": prompt}]
|
29 |
client = self.clients[self.current_model]
|
30 |
response = client.chat_completion(messages=messages, max_tokens=500)
|
31 |
if hasattr(response, 'choices') and response.choices:
|
32 |
+
generated_text = response.choices[0].message.content
|
33 |
+
self.conversation_history.append({"role": "assistant", "content": generated_text})
|
34 |
+
return generated_text
|
35 |
else:
|
36 |
return str(response)
|
37 |
except Exception as e:
|
38 |
return f"Error al realizar la inferencia: {e}"
|
39 |
|
40 |
+
def analyze_emotion(self, input_text):
|
41 |
+
# Diccionario para traducir emociones al espa帽ol
|
42 |
+
emotion_translation = {
|
43 |
+
"joy": "Alegr铆a",
|
44 |
+
"anger": "Enojo",
|
45 |
+
"fear": "Miedo",
|
46 |
+
"sadness": "Tristeza",
|
47 |
+
"love": "Amor",
|
48 |
+
"surprise": "Sorpresa"
|
49 |
+
}
|
50 |
+
|
51 |
+
try:
|
52 |
+
client = InferenceClient("bhadresh-savani/distilbert-base-uncased-emotion", token=hf_token)
|
53 |
+
response = client.text_classification(input_text)
|
54 |
+
|
55 |
+
# Traducir las emociones y formatear la respuesta
|
56 |
+
emotions = [
|
57 |
+
f"{emotion_translation[label['label']]}: {label['score']:.2%}"
|
58 |
+
for label in response
|
59 |
+
]
|
60 |
+
return "\n".join(emotions)
|
61 |
+
except Exception as e:
|
62 |
+
return f"Error al analizar la emoci贸n: {e}"
|
63 |
+
|
64 |
# Lista de modelos disponibles (con nombres amigables para la interfaz)
|
65 |
model_names = {
|
66 |
"CHATBOT": "microsoft/Phi-3-mini-4k-instruct"
|
|
|
71 |
|
72 |
# Define la funci贸n para generaci贸n de im谩genes con progreso
|
73 |
def generate_image_with_progress(prompt):
|
|
|
|
|
|
|
74 |
try:
|
75 |
client = InferenceClient("stabilityai/stable-diffusion-2", token=hf_token)
|
76 |
|
|
|
85 |
yield f"Error al generar la imagen: {e}", None
|
86 |
|
87 |
# Configura la interfaz en Gradio con selecci贸n de modelos y generaci贸n de im谩genes
|
88 |
+
with gr.Blocks(title="Multi-Model LLM Chatbot with Image Generation and Emotion Analysis") as demo:
|
89 |
gr.Markdown(
|
90 |
"""
|
91 |
+
## Chatbot Multi-Modelo LLM con Generaci贸n de Im谩genes y An谩lisis de Emociones
|
92 |
+
Este chatbot permite elegir entre m煤ltiples modelos de lenguaje para responder preguntas, recordar la conversaci贸n o analizar emociones en los textos.
|
|
|
93 |
"""
|
94 |
)
|
95 |
with gr.Row():
|
96 |
model_dropdown = gr.Dropdown(
|
97 |
+
choices=list(model_names.keys()) + ["Generaci贸n de Im谩genes", "An谩lisis de Emociones"],
|
98 |
value="CHATBOT",
|
99 |
label="Seleccionar Acci贸n/Modelo",
|
100 |
interactive=True
|
|
|
117 |
interactive=False
|
118 |
)
|
119 |
submit_button = gr.Button("Enviar")
|
120 |
+
|
121 |
# Define la funci贸n de actualizaci贸n
|
122 |
def process_input(selected_action, user_input):
|
123 |
try:
|
124 |
if selected_action == "Generaci贸n de Im谩genes":
|
|
|
125 |
progress_generator = generate_image_with_progress(user_input)
|
126 |
last_status = None
|
127 |
last_image = None
|
|
|
129 |
last_status = status
|
130 |
last_image = image
|
131 |
return last_status, last_image
|
132 |
+
elif selected_action == "An谩lisis de Emociones":
|
133 |
+
emotion_result = model_handler.analyze_emotion(user_input)
|
134 |
+
return f"Emoci贸n detectada:\n{emotion_result}", None
|
135 |
else:
|
136 |
model_handler.switch_model(selected_action)
|
137 |
response = model_handler.generate_response(user_input)
|
138 |
return response, None
|
139 |
except Exception as e:
|
140 |
return f"Error: {e}", None
|
141 |
+
|
142 |
# Conecta la funci贸n a los componentes
|
143 |
submit_button.click(
|
144 |
fn=process_input,
|
|
|
147 |
)
|
148 |
|
149 |
# Lanza la interfaz
|
150 |
+
demo.launch()
|