Kedreamix commited on
Commit
464f5bf
·
1 Parent(s): 95ce988

add checkpoints

Browse files
Files changed (34) hide show
  1. GPT_SoVITS/pretrained_models/.gitignore +2 -0
  2. Qwen/Qwen-1_8B-Chat/LICENSE +55 -0
  3. Qwen/Qwen-1_8B-Chat/NOTICE +280 -0
  4. Qwen/Qwen-1_8B-Chat/README.md +418 -0
  5. Qwen/Qwen-1_8B-Chat/assets/logo.jpg +0 -0
  6. Qwen/Qwen-1_8B-Chat/assets/qwen_tokenizer.png +0 -0
  7. Qwen/Qwen-1_8B-Chat/assets/react_showcase_001.png +0 -0
  8. Qwen/Qwen-1_8B-Chat/assets/react_showcase_002.png +0 -0
  9. Qwen/Qwen-1_8B-Chat/assets/wechat.png +0 -0
  10. Qwen/Qwen-1_8B-Chat/cache_autogptq_cuda_256.cpp +198 -0
  11. Qwen/Qwen-1_8B-Chat/cache_autogptq_cuda_kernel_256.cu +1708 -0
  12. Qwen/Qwen-1_8B-Chat/config.json +37 -0
  13. Qwen/Qwen-1_8B-Chat/configuration_qwen.py +71 -0
  14. Qwen/Qwen-1_8B-Chat/cpp_kernels.py +55 -0
  15. Qwen/Qwen-1_8B-Chat/examples/react_prompt.md +249 -0
  16. Qwen/Qwen-1_8B-Chat/generation_config.json +12 -0
  17. Qwen/Qwen-1_8B-Chat/model-00001-of-00002.safetensors +3 -0
  18. Qwen/Qwen-1_8B-Chat/model-00002-of-00002.safetensors +3 -0
  19. Qwen/Qwen-1_8B-Chat/model.safetensors.index.json +202 -0
  20. Qwen/Qwen-1_8B-Chat/modeling_qwen.py +1363 -0
  21. Qwen/Qwen-1_8B-Chat/qwen.tiktoken +0 -0
  22. Qwen/Qwen-1_8B-Chat/qwen_generation_utils.py +416 -0
  23. Qwen/Qwen-1_8B-Chat/tokenization_qwen.py +276 -0
  24. Qwen/Qwen-1_8B-Chat/tokenizer_config.json +10 -0
  25. checkpoints/SadTalker_V0.0.2_256.safetensors +3 -0
  26. checkpoints/hub/checkpoints/s3fd-619a316812.pth +3 -0
  27. checkpoints/lipsync_expert.pth +3 -0
  28. checkpoints/mapping_00109-model.pth.tar +3 -0
  29. checkpoints/mapping_00229-model.pth.tar +3 -0
  30. checkpoints/visual_quality_disc.pth +3 -0
  31. checkpoints/wav2lip.pth +3 -0
  32. checkpoints/wav2lip_gan.pth +3 -0
  33. gfpgan/weights/alignment_WFLW_4HG.pth +3 -0
  34. gfpgan/weights/detection_Resnet50_Final.pth +3 -0
GPT_SoVITS/pretrained_models/.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ *
2
+ !.gitignore
Qwen/Qwen-1_8B-Chat/LICENSE ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Tongyi Qianwen RESEARCH LICENSE AGREEMENT
2
+
3
+ Tongyi Qianwen Release Date: November 30, 2023
4
+
5
+ By clicking to agree or by using or distributing any portion or element of the Tongyi Qianwen Materials, you will be deemed to have recognized and accepted the content of this Agreement, which is effective immediately.
6
+
7
+ 1. Definitions
8
+ a. This Tongyi Qianwen RESEARCH LICENSE AGREEMENT (this "Agreement") shall mean the terms and conditions for use, reproduction, distribution and modification of the Materials as defined by this Agreement.
9
+ b. "We"(or "Us") shall mean Alibaba Cloud.
10
+ c. "You" (or "Your") shall mean a natural person or legal entity exercising the rights granted by this Agreement and/or using the Materials for any purpose and in any field of use.
11
+ d. "Third Parties" shall mean individuals or legal entities that are not under common control with Us or You.
12
+ e. "Tongyi Qianwen" shall mean the large language models, and software and algorithms, consisting of trained model weights, parameters (including optimizer states), machine-learning model code, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Us.
13
+ f. "Materials" shall mean, collectively, Alibaba Cloud's proprietary Tongyi Qianwen and Documentation (and any portion thereof) made available under this Agreement.
14
+ g. "Source" form shall mean the preferred form for making modifications, including but not limited to model source code, documentation source, and configuration files.
15
+ h. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation,
16
+ and conversions to other media types.
17
+ i. "Non-Commercial" shall mean for research or evaluation purposes only.
18
+
19
+ 2. Grant of Rights
20
+ a. You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Alibaba Cloud's intellectual property or other rights owned by Us embodied in the Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Materials FOR NON-COMMERCIAL PURPOSES ONLY.
21
+ b. If you are commercially using the Materials, You shall request a license from Us.
22
+
23
+ 3. Redistribution
24
+ You may reproduce and distribute copies of the Materials or derivative works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions:
25
+ a. You shall give any other recipients of the Materials or derivative works a copy of this Agreement;
26
+ b. You shall cause any modified files to carry prominent notices stating that You changed the files;
27
+ c. You shall retain in all copies of the Materials that You distribute the following attribution notices within a "Notice" text file distributed as a part of such copies: "Tongyi Qianwen is licensed under the Tongyi Qianwen RESEARCH LICENSE AGREEMENT, Copyright (c) Alibaba Cloud. All Rights Reserved."; and
28
+ d. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such derivative works as a whole, provided Your use, reproduction, and distribution of the work otherwise complies with the terms and conditions of this Agreement.
29
+
30
+ 4. Rules of use
31
+ a. The Materials may be subject to export controls or restrictions in China, the United States or other countries or regions. You shall comply with applicable laws and regulations in your use of the Materials.
32
+ b. You can not use the Materials or any output therefrom to improve any other large language model (excluding Tongyi Qianwen or derivative works thereof).
33
+
34
+ 5. Intellectual Property
35
+ a. We retain ownership of all intellectual property rights in and to the Materials and derivatives made by or for Us. Conditioned upon compliance with the terms and conditions of this Agreement, with respect to any derivative works and modifications of the Materials that are made by you, you are and will be the owner of such derivative works and modifications.
36
+ b. No trademark license is granted to use the trade names, trademarks, service marks, or product names of Us, except as required to fulfill notice requirements under this Agreement or as required for reasonable and customary use in describing and redistributing the Materials.
37
+ c. If you commence a lawsuit or other proceedings (including a cross-claim or counterclaim in a lawsuit) against Us or any entity alleging that the Materials or any output therefrom, or any part of the foregoing, infringe any intellectual property or other right owned or licensable by you, then all licences granted to you under this Agreement shall terminate as of the date such lawsuit or other proceeding is commenced or brought.
38
+
39
+ 6. Disclaimer of Warranty and Limitation of Liability
40
+ a. We are not obligated to support, update, provide training for, or develop any further version of the Tongyi Qianwen Materials or to grant any license thereto.
41
+ b. THE MATERIALS ARE PROVIDED "AS IS" WITHOUT ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT, OR FITNESS FOR A PARTICULAR PURPOSE. WE MAKE NO WARRANTY AND ASSUME NO RESPONSIBILITY FOR THE SAFETY OR STABILITY OF THE MATERIALS AND ANY OUTPUT THEREFROM.
42
+ c. IN NO EVENT SHALL WE BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING, BUT NOT LIMITED TO ANY DIRECT, OR INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING FROM YOUR USE OR INABILITY TO USE THE MATERIALS OR ANY OUTPUT OF IT, NO MATTER HOW IT’S CAUSED.
43
+ d. You will defend, indemnify and hold harmless Us from and against any claim by any third party arising out of or related to your use or distribution of the Materials.
44
+
45
+ 7. Survival and Termination.
46
+ a. The term of this Agreement shall commence upon your acceptance of this Agreement or access to the Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein.
47
+ b. We may terminate this Agreement if you breach any of the terms or conditions of this Agreement. Upon termination of this Agreement, you must delete and cease use of the Materials. Sections 6 and 8 shall survive the termination of this Agreement.
48
+
49
+ 8. Governing Law and Jurisdiction.
50
+ a. This Agreement and any dispute arising out of or relating to it will be governed by the laws of China, without regard to conflict of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement.
51
+ b. The People's Courts in Hangzhou City shall have exclusive jurisdiction over any dispute arising out of this Agreement.
52
+
53
+ 9. Other Terms and Conditions.
54
+ a. Any arrangements, understandings, or agreements regarding the Material not stated herein are separate from and independent of the terms and conditions of this Agreement. You shall request a seperate license from Us, if You use the Materials in ways not expressly agreed to in this Agreement.
55
+ b. We shall not be bound by any additional or different terms or conditions communicated by You unless expressly agreed.
Qwen/Qwen-1_8B-Chat/NOTICE ADDED
@@ -0,0 +1,280 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ------------- LICENSE FOR NVIDIA Megatron-LM code --------------
2
+
3
+ Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
4
+
5
+ Redistribution and use in source and binary forms, with or without
6
+ modification, are permitted provided that the following conditions
7
+ are met:
8
+ * Redistributions of source code must retain the above copyright
9
+ notice, this list of conditions and the following disclaimer.
10
+ * Redistributions in binary form must reproduce the above copyright
11
+ notice, this list of conditions and the following disclaimer in the
12
+ documentation and/or other materials provided with the distribution.
13
+ * Neither the name of NVIDIA CORPORATION nor the names of its
14
+ contributors may be used to endorse or promote products derived
15
+ from this software without specific prior written permission.
16
+
17
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
18
+ EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20
+ PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
21
+ CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
22
+ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
23
+ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
24
+ PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
25
+ OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
+
29
+
30
+ ------------- LICENSE FOR OpenAI tiktoken code --------------
31
+
32
+ MIT License
33
+
34
+ Copyright (c) 2022 OpenAI, Shantanu Jain
35
+
36
+ Permission is hereby granted, free of charge, to any person obtaining a copy
37
+ of this software and associated documentation files (the "Software"), to deal
38
+ in the Software without restriction, including without limitation the rights
39
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
40
+ copies of the Software, and to permit persons to whom the Software is
41
+ furnished to do so, subject to the following conditions:
42
+
43
+ The above copyright notice and this permission notice shall be included in all
44
+ copies or substantial portions of the Software.
45
+
46
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
47
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
48
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
49
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
50
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
51
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
52
+ SOFTWARE.
53
+
54
+ ------------- LICENSE FOR stanford_alpaca code --------------
55
+
56
+ Apache License
57
+ Version 2.0, January 2004
58
+ http://www.apache.org/licenses/
59
+
60
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
61
+
62
+ 1. Definitions.
63
+
64
+ "License" shall mean the terms and conditions for use, reproduction,
65
+ and distribution as defined by Sections 1 through 9 of this document.
66
+
67
+ "Licensor" shall mean the copyright owner or entity authorized by
68
+ the copyright owner that is granting the License.
69
+
70
+ "Legal Entity" shall mean the union of the acting entity and all
71
+ other entities that control, are controlled by, or are under common
72
+ control with that entity. For the purposes of this definition,
73
+ "control" means (i) the power, direct or indirect, to cause the
74
+ direction or management of such entity, whether by contract or
75
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
76
+ outstanding shares, or (iii) beneficial ownership of such entity.
77
+
78
+ "You" (or "Your") shall mean an individual or Legal Entity
79
+ exercising permissions granted by this License.
80
+
81
+ "Source" form shall mean the preferred form for making modifications,
82
+ including but not limited to software source code, documentation
83
+ source, and configuration files.
84
+
85
+ "Object" form shall mean any form resulting from mechanical
86
+ transformation or translation of a Source form, including but
87
+ not limited to compiled object code, generated documentation,
88
+ and conversions to other media types.
89
+
90
+ "Work" shall mean the work of authorship, whether in Source or
91
+ Object form, made available under the License, as indicated by a
92
+ copyright notice that is included in or attached to the work
93
+ (an example is provided in the Appendix below).
94
+
95
+ "Derivative Works" shall mean any work, whether in Source or Object
96
+ form, that is based on (or derived from) the Work and for which the
97
+ editorial revisions, annotations, elaborations, or other modifications
98
+ represent, as a whole, an original work of authorship. For the purposes
99
+ of this License, Derivative Works shall not include works that remain
100
+ separable from, or merely link (or bind by name) to the interfaces of,
101
+ the Work and Derivative Works thereof.
102
+
103
+ "Contribution" shall mean any work of authorship, including
104
+ the original version of the Work and any modifications or additions
105
+ to that Work or Derivative Works thereof, that is intentionally
106
+ submitted to Licensor for inclusion in the Work by the copyright owner
107
+ or by an individual or Legal Entity authorized to submit on behalf of
108
+ the copyright owner. For the purposes of this definition, "submitted"
109
+ means any form of electronic, verbal, or written communication sent
110
+ to the Licensor or its representatives, including but not limited to
111
+ communication on electronic mailing lists, source code control systems,
112
+ and issue tracking systems that are managed by, or on behalf of, the
113
+ Licensor for the purpose of discussing and improving the Work, but
114
+ excluding communication that is conspicuously marked or otherwise
115
+ designated in writing by the copyright owner as "Not a Contribution."
116
+
117
+ "Contributor" shall mean Licensor and any individual or Legal Entity
118
+ on behalf of whom a Contribution has been received by Licensor and
119
+ subsequently incorporated within the Work.
120
+
121
+ 2. Grant of Copyright License. Subject to the terms and conditions of
122
+ this License, each Contributor hereby grants to You a perpetual,
123
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
124
+ copyright license to reproduce, prepare Derivative Works of,
125
+ publicly display, publicly perform, sublicense, and distribute the
126
+ Work and such Derivative Works in Source or Object form.
127
+
128
+ 3. Grant of Patent License. Subject to the terms and conditions of
129
+ this License, each Contributor hereby grants to You a perpetual,
130
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
131
+ (except as stated in this section) patent license to make, have made,
132
+ use, offer to sell, sell, import, and otherwise transfer the Work,
133
+ where such license applies only to those patent claims licensable
134
+ by such Contributor that are necessarily infringed by their
135
+ Contribution(s) alone or by combination of their Contribution(s)
136
+ with the Work to which such Contribution(s) was submitted. If You
137
+ institute patent litigation against any entity (including a
138
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
139
+ or a Contribution incorporated within the Work constitutes direct
140
+ or contributory patent infringement, then any patent licenses
141
+ granted to You under this License for that Work shall terminate
142
+ as of the date such litigation is filed.
143
+
144
+ 4. Redistribution. You may reproduce and distribute copies of the
145
+ Work or Derivative Works thereof in any medium, with or without
146
+ modifications, and in Source or Object form, provided that You
147
+ meet the following conditions:
148
+
149
+ (a) You must give any other recipients of the Work or
150
+ Derivative Works a copy of this License; and
151
+
152
+ (b) You must cause any modified files to carry prominent notices
153
+ stating that You changed the files; and
154
+
155
+ (c) You must retain, in the Source form of any Derivative Works
156
+ that You distribute, all copyright, patent, trademark, and
157
+ attribution notices from the Source form of the Work,
158
+ excluding those notices that do not pertain to any part of
159
+ the Derivative Works; and
160
+
161
+ (d) If the Work includes a "NOTICE" text file as part of its
162
+ distribution, then any Derivative Works that You distribute must
163
+ include a readable copy of the attribution notices contained
164
+ within such NOTICE file, excluding those notices that do not
165
+ pertain to any part of the Derivative Works, in at least one
166
+ of the following places: within a NOTICE text file distributed
167
+ as part of the Derivative Works; within the Source form or
168
+ documentation, if provided along with the Derivative Works; or,
169
+ within a display generated by the Derivative Works, if and
170
+ wherever such third-party notices normally appear. The contents
171
+ of the NOTICE file are for informational purposes only and
172
+ do not modify the License. You may add Your own attribution
173
+ notices within Derivative Works that You distribute, alongside
174
+ or as an addendum to the NOTICE text from the Work, provided
175
+ that such additional attribution notices cannot be construed
176
+ as modifying the License.
177
+
178
+ You may add Your own copyright statement to Your modifications and
179
+ may provide additional or different license terms and conditions
180
+ for use, reproduction, or distribution of Your modifications, or
181
+ for any such Derivative Works as a whole, provided Your use,
182
+ reproduction, and distribution of the Work otherwise complies with
183
+ the conditions stated in this License.
184
+
185
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
186
+ any Contribution intentionally submitted for inclusion in the Work
187
+ by You to the Licensor shall be under the terms and conditions of
188
+ this License, without any additional terms or conditions.
189
+ Notwithstanding the above, nothing herein shall supersede or modify
190
+ the terms of any separate license agreement you may have executed
191
+ with Licensor regarding such Contributions.
192
+
193
+ 6. Trademarks. This License does not grant permission to use the trade
194
+ names, trademarks, service marks, or product names of the Licensor,
195
+ except as required for reasonable and customary use in describing the
196
+ origin of the Work and reproducing the content of the NOTICE file.
197
+
198
+ 7. Disclaimer of Warranty. Unless required by applicable law or
199
+ agreed to in writing, Licensor provides the Work (and each
200
+ Contributor provides its Contributions) on an "AS IS" BASIS,
201
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
202
+ implied, including, without limitation, any warranties or conditions
203
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
204
+ PARTICULAR PURPOSE. You are solely responsible for determining the
205
+ appropriateness of using or redistributing the Work and assume any
206
+ risks associated with Your exercise of permissions under this License.
207
+
208
+ 8. Limitation of Liability. In no event and under no legal theory,
209
+ whether in tort (including negligence), contract, or otherwise,
210
+ unless required by applicable law (such as deliberate and grossly
211
+ negligent acts) or agreed to in writing, shall any Contributor be
212
+ liable to You for damages, including any direct, indirect, special,
213
+ incidental, or consequential damages of any character arising as a
214
+ result of this License or out of the use or inability to use the
215
+ Work (including but not limited to damages for loss of goodwill,
216
+ work stoppage, computer failure or malfunction, or any and all
217
+ other commercial damages or losses), even if such Contributor
218
+ has been advised of the possibility of such damages.
219
+
220
+ 9. Accepting Warranty or Additional Liability. While redistributing
221
+ the Work or Derivative Works thereof, You may choose to offer,
222
+ and charge a fee for, acceptance of support, warranty, indemnity,
223
+ or other liability obligations and/or rights consistent with this
224
+ License. However, in accepting such obligations, You may act only
225
+ on Your own behalf and on Your sole responsibility, not on behalf
226
+ of any other Contributor, and only if You agree to indemnify,
227
+ defend, and hold each Contributor harmless for any liability
228
+ incurred by, or claims asserted against, such Contributor by reason
229
+ of your accepting any such warranty or additional liability.
230
+
231
+ END OF TERMS AND CONDITIONS
232
+
233
+ APPENDIX: How to apply the Apache License to your work.
234
+
235
+ To apply the Apache License to your work, attach the following
236
+ boilerplate notice, with the fields enclosed by brackets "[]"
237
+ replaced with your own identifying information. (Don't include
238
+ the brackets!) The text should be enclosed in the appropriate
239
+ comment syntax for the file format. We also recommend that a
240
+ file or class name and description of purpose be included on the
241
+ same "printed page" as the copyright notice for easier
242
+ identification within third-party archives.
243
+
244
+ Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
245
+
246
+ Licensed under the Apache License, Version 2.0 (the "License");
247
+ you may not use this file except in compliance with the License.
248
+ You may obtain a copy of the License at
249
+
250
+ http://www.apache.org/licenses/LICENSE-2.0
251
+
252
+ Unless required by applicable law or agreed to in writing, software
253
+ distributed under the License is distributed on an "AS IS" BASIS,
254
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
255
+ See the License for the specific language governing permissions and
256
+ limitations under the License.
257
+
258
+ ------------- LICENSE FOR PanQiWei AutoGPTQ code --------------
259
+
260
+ MIT License
261
+
262
+ Copyright (c) 2023 潘其威(William)
263
+
264
+ Permission is hereby granted, free of charge, to any person obtaining a copy
265
+ of this software and associated documentation files (the "Software"), to deal
266
+ in the Software without restriction, including without limitation the rights
267
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
268
+ copies of the Software, and to permit persons to whom the Software is
269
+ furnished to do so, subject to the following conditions:
270
+
271
+ The above copyright notice and this permission notice shall be included in all
272
+ copies or substantial portions of the Software.
273
+
274
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
275
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
276
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
277
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
278
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
279
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
280
+ SOFTWARE.
Qwen/Qwen-1_8B-Chat/README.md ADDED
@@ -0,0 +1,418 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - zh
4
+ - en
5
+ tags:
6
+ - qwen
7
+ pipeline_tag: text-generation
8
+ inference: false
9
+ ---
10
+
11
+ # Qwen-1.8B-Chat
12
+
13
+ <p align="center">
14
+ <img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/logo_qwen.jpg" width="400"/>
15
+ <p>
16
+ <br>
17
+
18
+ <p align="center">
19
+ 🤗 <a href="https://huggingface.co/Qwen">Hugging Face</a>&nbsp&nbsp | &nbsp&nbsp🤖 <a href="https://modelscope.cn/organization/qwen">ModelScope</a>&nbsp&nbsp | &nbsp&nbsp 📑 <a href="https://arxiv.org/abs/2309.16609">Paper</a> &nbsp&nbsp | &nbsp&nbsp🖥️ <a href="https://www.modelscope.cn/studios/qwen/Qwen-1_8B-Chat-Demo/summary">Demo</a>
20
+ <br>
21
+ <a href="https://github.com/QwenLM/Qwen/blob/main/assets/wechat.png">WeChat (微信)</a>&nbsp&nbsp | &nbsp&nbsp<a href="https://discord.gg/z3GAxXZ9Ce">Discord</a>&nbsp&nbsp | &nbsp&nbsp<a href="https://dashscope.aliyun.com">API</a>
22
+ </p>
23
+ <br>
24
+
25
+ ## 介绍(Introduction)
26
+ **通义千问-1.8B(Qwen-1.8B)**是阿里云研发的通义千问大模型系列的18亿参数规模的模型。Qwen-1.8B是基于Transformer的大语言模型, 在超大规模的预训练数据上进行训练得到。预训练数据类型多样,覆盖广泛,包括大量网络文本、专业书籍、代码等。同时,在Qwen-1.8B的基础上,我们使用对齐机制打造了基于大语言模型的AI助手Qwen-1.8B-Chat。本仓库为Qwen-1.8B-Chat的仓库。
27
+
28
+ 通义千问-1.8B(Qwen-1.8B)主要有以下特点:
29
+ 1. **低成本部署**:提供int8和int4量化版本,推理最低仅需不到2GB显存,生成2048 tokens仅需3GB显存占用。微调最低仅需6GB。
30
+ 2. **大规模高质量训练语料**:使用超过2.2万亿tokens的数据进行预训练,包含高质量中、英、多语言、代码、数学等数据,涵盖通用及专业领域的训练语料。通过大量对比实验对预训练语料分布进行了优化。
31
+ 3. **优秀的性能**:Qwen-1.8B支持8192上下文长度,在多个中英文下游评测任务上(涵盖常识推理、代码、数学、翻译等),效果显著超越现有的相近规模开源模型,具体评测结果请详见下文。
32
+ 4. **覆盖更全面的词表**:相比目前以中英词表为主的开源模型,Qwen-1.8B使用了约15万大小的词表。该词表对多语言更加友好,方便用户在不扩展词表的情况下对部分语种进行能力增强和扩展。
33
+ 5. **系统指令跟随**:Qwen-1.8B-Chat可以通过调整系统指令,实现**角色扮演**,**语言风格迁移**,**任务设定**,和**行为设定**等能力。
34
+
35
+
36
+ 如果您想了解更多关于通义千问1.8B开源模型的细节,我们建议您参阅[GitHub代码库](https://github.com/QwenLM/Qwen)。
37
+
38
+ **Qwen-1.8B** is the 1.8B-parameter version of the large language model series, Qwen (abbr. Tongyi Qianwen), proposed by Aibaba Cloud. Qwen-1.8B is a Transformer-based large language model, which is pretrained on a large volume of data, including web texts, books, codes, etc. Additionally, based on the pretrained Qwen-1.8B, we release Qwen-1.8B-Chat, a large-model-based AI assistant, which is trained with alignment techniques. This repository is the one for Qwen-1.8B-Chat.
39
+
40
+ The features of Qwen-1.8B include:
41
+ 1. **Low-cost deployment**: We provide int4 and int8 quantized versions, the minimum memory requirment for inference is less than 2GB, generating 2048 tokens only 3GB of memory usage. The minimum memory requirment of finetuning is only 6GB.
42
+
43
+ 2. **Large-scale high-quality training corpora**: It is pretrained on over 2.2 trillion tokens, including Chinese, English, multilingual texts, code, and mathematics, covering general and professional fields. The distribution of the pre-training corpus has been optimized through a large number of ablation experiments.
44
+ 3. **Good performance**: It supports 8192 context length and significantly surpasses existing open-source models of similar scale on multiple Chinese and English downstream evaluation tasks (including commonsense, reasoning, code, mathematics, etc.), and even surpasses some larger-scale models in several benchmarks. See below for specific evaluation results.
45
+ 4. **More comprehensive vocabulary coverage**: Compared with other open-source models based on Chinese and English vocabularies, Qwen-1.8B uses a vocabulary of over 150K tokens. This vocabulary is more friendly to multiple languages, enabling users to directly further enhance the capability for certain languages without expanding the vocabulary.
46
+ 5. **System prompt**: Qwen-1.8B-Chat can realize roly playing, language style transfer, task setting, and behavior setting by using system prompt.
47
+
48
+ For more details about the open-source model of Qwen-1.8B-Chat, please refer to the [GitHub](https://github.com/QwenLM/Qwen) code repository.
49
+
50
+
51
+ <br>
52
+
53
+ ## 要求(Requirements)
54
+
55
+ * python 3.8及以上版本
56
+ * pytorch 1.12及以上版本,推荐2.0及以上版本
57
+ * 建议使用CUDA 11.4及以上(GPU用户、flash-attention用户等需考虑��选项)
58
+ * python 3.8 and above
59
+ * pytorch 1.12 and above, 2.0 and above are recommended
60
+ * CUDA 11.4 and above are recommended (this is for GPU users, flash-attention users, etc.)
61
+
62
+ ## 依赖项(Dependency)
63
+
64
+ 运行Qwen-1.8B-Chat,请确保满足上述要求,再执行以下pip命令安装依赖库
65
+
66
+ To run Qwen-1.8B-Chat, please make sure you meet the above requirements, and then execute the following pip commands to install the dependent libraries.
67
+
68
+ ```bash
69
+ pip install transformers==4.32.0 accelerate tiktoken einops scipy transformers_stream_generator==0.0.4 peft deepspeed
70
+ ```
71
+
72
+ 另外,推荐安装`flash-attention`库(**当前已支持flash attention 2**),以实现更高的效率和更低的显存占用。
73
+
74
+ In addition, it is recommended to install the `flash-attention` library (**we support flash attention 2 now.**) for higher efficiency and lower memory usage.
75
+
76
+ ```bash
77
+ git clone https://github.com/Dao-AILab/flash-attention
78
+ cd flash-attention && pip install .
79
+ # 下方安装可选,安装可能比较缓慢。
80
+ # pip install csrc/layer_norm
81
+ # pip install csrc/rotary
82
+ ```
83
+ <br>
84
+
85
+ ## 快速使用(Quickstart)
86
+
87
+ 下面我们展示了一个使用Qwen-1.8B-Chat模型,进行多轮对话交互的样例:
88
+
89
+ We show an example of multi-turn interaction with Qwen-1.8B-Chat in the following code:
90
+
91
+ ```python
92
+ from transformers import AutoModelForCausalLM, AutoTokenizer
93
+ from transformers.generation import GenerationConfig
94
+
95
+ # Note: The default behavior now has injection attack prevention off.
96
+ tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-1_8B-Chat", trust_remote_code=True)
97
+
98
+ # use bf16
99
+ # model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-1_8B-Chat", device_map="auto", trust_remote_code=True, bf16=True).eval()
100
+ # use fp16
101
+ # model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-1_8B-Chat", device_map="auto", trust_remote_code=True, fp16=True).eval()
102
+ # use cpu only
103
+ # model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-1_8B-Chat", device_map="cpu", trust_remote_code=True).eval()
104
+ # use auto mode, automatically select precision based on the device.
105
+ model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-1_8B-Chat", device_map="auto", trust_remote_code=True).eval()
106
+
107
+ # Specify hyperparameters for generation. But if you use transformers>=4.32.0, there is no need to do this.
108
+ # model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-1_8B-Chat", trust_remote_code=True) # 可指定不同的生成长度、top_p等相关超参
109
+
110
+ # 第一轮对话 1st dialogue turn
111
+ response, history = model.chat(tokenizer, "你好", history=None)
112
+ print(response)
113
+ # 你好!很高兴为你提供帮助。
114
+
115
+ # 第二轮对话 2nd dialogue turn
116
+ response, history = model.chat(tokenizer, "给我讲一个年轻人奋斗创业最终取得成功的故事。", history=history)
117
+ print(response)
118
+ # 这是一个关于一个年轻人奋斗创业最终取得成功的故事。
119
+ # 故事的主人公叫李明,他来自一个普通的家庭,父母都是普通的工人。从小,李明就立下了一个目标:要成为一名成功的企业家。
120
+ # 为了实现这个目标,李明勤奋学习,考上了大学。在大学期间,他积极参加各种创业比赛,获得了不少奖项。他还利用课余时间去实习,积累了宝贵的经验。
121
+ # 毕业后,李明决定开始自己的创业之路。他开始寻找投资机会,但多次都被拒绝了。然而,他并没有放弃。他继续努力,不断改进自己的创业计划,并寻找新的投资机会。
122
+ # 最终,李明成功地获得了一笔投资,开始了自己的创业之路。他成立了一家科技公司,专注于开发新型软件。在他的领导下,公司迅速发展起来,成为了一家成功的科技企业。
123
+ # 李明的成功并不是偶然的。他勤奋、坚韧、勇于冒险,不断学习和改进自己。他的成功也证明了,只要努力奋斗,任何人都有可能取得成功。
124
+
125
+ # 第三轮对话 3rd dialogue turn
126
+ response, history = model.chat(tokenizer, "给这个故事起一个标题", history=history)
127
+ print(response)
128
+ # 《奋斗创业:一个年轻人的成功之路》
129
+
130
+ # Qwen-1.8B-Chat现在可以通过调整系统指令(System Prompt),实现角色扮演,语言风格迁移,任务设定,行为设定等能力。
131
+ # Qwen-1.8B-Chat can realize roly playing, language style transfer, task setting, and behavior setting by system prompt.
132
+ response, _ = model.chat(tokenizer, "你好呀", history=None, system="请用二次元可爱语气和我说话")
133
+ print(response)
134
+ # 你好啊!我是一只可爱的二次元猫咪哦,不知道你有什么问题需要我帮忙解答吗?
135
+
136
+ response, _ = model.chat(tokenizer, "My colleague works diligently", history=None, system="You will write beautiful compliments according to needs")
137
+ print(response)
138
+ # Your colleague is an outstanding worker! Their dedication and hard work are truly inspiring. They always go above and beyond to ensure that
139
+ # their tasks are completed on time and to the highest standard. I am lucky to have them as a colleague, and I know I can count on them to handle any challenge that comes their way.
140
+ ```
141
+
142
+ 关于更多的使用说明,请参考我们的[GitHub repo](https://github.com/QwenLM/Qwen)获取更多信息。
143
+
144
+ For more information, please refer to our [GitHub repo](https://github.com/QwenLM/Qwen) for more information.
145
+
146
+ ## Tokenizer
147
+
148
+ > 注:作为术语的“tokenization”在中文中尚无共识的概念对应,本文档采用英文表达以利说明。
149
+
150
+ 基于tiktoken的分词器有别于其他分词器,比如sentencepiece分词器。尤其在微调阶段,需要特别注意特殊token的使用。关于tokenizer的更多信息,以及微调时涉及的相关使用,请参阅[文档](https://github.com/QwenLM/Qwen/blob/main/tokenization_note_zh.md)。
151
+
152
+ Our tokenizer based on tiktoken is different from other tokenizers, e.g., sentencepiece tokenizer. You need to pay attention to special tokens, especially in finetuning. For more detailed information on the tokenizer and related use in fine-tuning, please refer to the [documentation](https://github.com/QwenLM/Qwen/blob/main/tokenization_note.md).
153
+
154
+ ## 量化 (Quantization)
155
+
156
+ ### 用法 (Usage)
157
+
158
+ **请注意:我们更新量化方案为基于[AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ)的量化,提供Qwen-1.8B-Chat的Int4量化模型[点击这里](https://huggingface.co/Qwen/Qwen-1_8B-Chat-Int4)。相比此前方案,该方案在模型评测效果几乎无损,且存储需求更低,推理速度更优。**
159
+
160
+ **Note: we provide a new solution based on [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ), and release an Int4 quantized model for Qwen-1.8B-Chat [Click here](https://huggingface.co/Qwen/Qwen-1_8B-Chat-Int4), which achieves nearly lossless model effects but improved performance on both memory costs and inference speed, in comparison with the previous solution.**
161
+
162
+ 以下我们提供示例说明如何使用Int4量化模型。在开始使用前,请先保证满足要求(如torch 2.0及以上,transformers版本为4.32.0及以上,等等),并安装所需安装包:
163
+
164
+ Here we demonstrate how to use our provided quantized models for inference. Before you start, make sure you meet the requirements of auto-gptq (e.g., torch 2.0 and above, transformers 4.32.0 and above, etc.) and install the required packages:
165
+
166
+ ```bash
167
+ pip install auto-gptq optimum
168
+ ```
169
+
170
+ 如安装`auto-gptq`遇到问题,我们建议您到官方[repo](https://github.com/PanQiWei/AutoGPTQ)搜索合适的预编译wheel。
171
+
172
+ 随后即可使用和上述一致的用法调用量化模型:
173
+
174
+ If you meet problems installing `auto-gptq`, we advise you to check out the official [repo](https://github.com/PanQiWei/AutoGPTQ) to find a pre-build wheel.
175
+
176
+ Then you can load the quantized model easily and run inference as same as usual:
177
+
178
+ ```python
179
+ model = AutoModelForCausalLM.from_pretrained(
180
+ "Qwen/Qwen-1_8B-Chat-Int4",
181
+ device_map="auto",
182
+ trust_remote_code=True
183
+ ).eval()
184
+ response, history = model.chat(tokenizer, "你好", history=None)
185
+ ```
186
+
187
+ ### 效果评测
188
+
189
+ 我们使用原始模型的FP32和BF16精度,以及量化过的Int8和Int4模型在基准评测上做了测试,结果如下所示:
190
+
191
+ We illustrate the model performance of both FP32, BF16, Int8 and Int4 models on the benchmark. Results are shown below:
192
+
193
+ | Quantization | MMLU | CEval (val) | GSM8K | Humaneval |
194
+ |--------------|:----:|:-----------:|:-----:|:---------:|
195
+ | FP32 | 43.4 | 57.0 | 33.0 | 26.8 |
196
+ | BF16 | 43.3 | 55.6 | 33.7 | 26.2 |
197
+ | Int8 | 43.1 | 55.8 | 33.0 | 27.4 |
198
+ | Int4 | 42.9 | 52.8 | 31.2 | 25.0 |
199
+
200
+ ### 推理速度 (Inference Speed)
201
+
202
+ 我们测算了FP32、BF16精度和Int8、Int4量化模型生成2048和8192个token的平均推理速度。如图所示:
203
+
204
+ We measured the average inference speed of generating 2048 and 8192 tokens under FP32, BF16 precision and Int8, Int4 quantization level, respectively.
205
+
206
+ | Quantization | FlashAttn | Speed (2048 tokens) | Speed (8192 tokens) |
207
+ |--------------| :-------: |:-------------------:|:-------------------:|
208
+ | FP32 | v2 | 52.96 | 47.35 |
209
+ | BF16 | v2 | 54.09 | 54.04 |
210
+ | Int8 | v2 | 55.56 | 55.62 |
211
+ | Int4 | v2 | 71.07 | 76.45 |
212
+ | FP32 | v1 | 52.00 | 45.80 |
213
+ | BF16 | v1 | 51.70 | 55.04 |
214
+ | Int8 | v1 | 53.16 | 53.33 |
215
+ | Int4 | v1 | 69.82 | 67.44 |
216
+ | FP32 | Disabled | 52.28 | 44.95 |
217
+ | BF16 | Disabled | 48.17 | 45.01 |
218
+ | Int8 | Disabled | 52.16 | 52.99 |
219
+ | Int4 | Disabled | 68.37 | 65.94 |
220
+
221
+ 具体而言,我们记录在长度为1的上下文的条件下生成8192个token的性能。评测运行于单张A100-SXM4-80G GPU,使用PyTorch 2.0.1和CUDA 11.4。推理速度是生成8192个token的速度均值。
222
+
223
+ In detail, the setting of profiling is generating 8192 new tokens with 1 context token. The profiling runs on a single A100-SXM4-80G GPU with PyTorch 2.0.1 and CUDA 11.4. The inference speed is averaged over the generated 8192 tokens.
224
+
225
+ ### 显存使用 (GPU Memory Usage)
226
+
227
+ 我们测算了FP32、BF16精度和Int8、Int4量化模型生成2048个及8192个token(单个token作为输入)的峰值显存占用情况。结果如下所示:
228
+
229
+ We also profile the peak GPU memory usage for generating 2048 tokens and 8192 tokens (with single token as context) under FP32, BF16 or Int8, Int4 quantization level, respectively. The results are shown below.
230
+
231
+ | Quantization Level | Peak Usage for Encoding 2048 Tokens | Peak Usage for Generating 8192 Tokens |
232
+ |--------------------|:-----------------------------------:|:-------------------------------------:|
233
+ | FP32 | 8.45GB | 13.06GB |
234
+ | BF16 | 4.23GB | 6.48GB |
235
+ | Int8 | 3.48GB | 5.34GB |
236
+ | Int4 | 2.91GB | 4.80GB |
237
+
238
+ 上述性能测算使用[此脚本](https://qianwen-res.oss-cn-beijing.aliyuncs.com/profile.py)完成。
239
+
240
+ The above speed and memory profiling are conducted using [this script](https://qianwen-res.oss-cn-beijing.aliyuncs.com/profile.py).
241
+ <br>
242
+
243
+ ## 模型细节(Model)
244
+
245
+ 与Qwen-1.8B预训练模型相同,Qwen-1.8B-Chat模型规模基本情况如下所示
246
+
247
+ The details of the model architecture of Qwen-1.8B-Chat are listed as follows
248
+
249
+ | Hyperparameter | Value |
250
+ |:----------------|:------:|
251
+ | n_layers | 24 |
252
+ | n_heads | 16 |
253
+ | d_model | 2048 |
254
+ | vocab size | 151851 |
255
+ | sequence length | 8192 |
256
+
257
+ 在位置编码、FFN激活函数和normalization的实现方式上,我们也采用了目前最流行的做法,
258
+ 即RoPE相对位置编码、SwiGLU激活函数、RMSNorm(可选安装flash-attention加速)。
259
+
260
+ 在分词器方面,相比目前主流开源模型以中英词表为主,Qwen-1.8B-Chat使用了约15万token大小的词表。
261
+ 该词表在GPT-4使用的BPE词表`cl100k_base`基础上,对中文、多语言进行了优化,在对中、英、代码数据的高效编解码的基础上,对部分多语言更加友好,方便用户在不扩展词表的情况下对部分语种进行能力增强。
262
+ 词表对数字按单个数字位切分。调用较为高效的[tiktoken分词库](https://github.com/openai/tiktoken)进行分词。
263
+
264
+ For position encoding, FFN activation function, and normalization calculation methods, we adopt the prevalent practices, i.e., RoPE relative position encoding, SwiGLU for activation function, and RMSNorm for normalization (optional installation of flash-attention for acceleration).
265
+
266
+ For tokenization, compared to the current mainstream open-source models based on Chinese and English vocabularies, Qwen-1.8B-Chat uses a vocabulary of over 150K tokens.
267
+ It first considers efficient encoding of Chinese, English, and code data, and is also more friendly to multilingual languages, enabling users to directly enhance the capability of some languages without expanding the vocabulary.
268
+ It segments numbers by single digit, and calls the [tiktoken](https://github.com/openai/tiktoken) tokenizer library for efficient tokenization.
269
+
270
+ ## 评测效果(Evaluation)
271
+
272
+ 对于Qwen-1.8B-Chat模型,我们同样评测了常规的中文理解(C-Eval)、英文理解(MMLU)、代码(HumanEval)和数学(GSM8K)等权威任务,同时包含了长序列任务的评测结果。由于Qwen-1.8B-Chat模型经过对齐后,激发了较强的外部系统调用能力,我们还进行了工具使用能力方面的评测。
273
+
274
+ 提示:由于硬件和框架造成的舍入误差,复现结果如有波动属于正常现象。
275
+
276
+ For Qwen-1.8B-Chat, we also evaluate the model on C-Eval, MMLU, HumanEval, GSM8K, etc., as well as the benchmark evaluation for long-context understanding, and tool usage.
277
+
278
+ Note: Due to rounding errors caused by hardware and framework, differences in reproduced results are possible.
279
+
280
+ ### 中文评测(Chinese Evaluation)
281
+
282
+ #### C-Eval
283
+
284
+ 在[C-Eval](https://arxiv.org/abs/2305.08322)验证集上,我们评价了Qwen-1.8B-Chat模型的准确率
285
+
286
+ We demonstrate the accuracy of Qwen-1.8B-Chat on C-Eval validation set
287
+
288
+ | Model | Acc. |
289
+ |:--------------------------------:|:---------:|
290
+ | RedPajama-INCITE-Chat-3B | 18.3 |
291
+ | OpenBuddy-3B | 23.5 |
292
+ | Firefly-Bloom-1B4 | 23.6 |
293
+ | OpenLLaMA-Chinese-3B | 24.4 |
294
+ | LLaMA2-7B-Chat | 31.9 |
295
+ | ChatGLM2-6B-Chat | 52.6 |
296
+ | InternLM-7B-Chat | 53.6 |
297
+ | **Qwen-1.8B-Chat (0-shot)** | 55.6 |
298
+ | **Qwen-7B-Chat (0-shot)** | 59.7 |
299
+ | **Qwen-7B-Chat (5-shot)** | 59.3 |
300
+
301
+ C-Eval测试集上,Qwen-1.8B-Chat模型的zero-shot准确率结果如下:
302
+
303
+ The zero-shot accuracy of Qwen-1.8B-Chat on C-Eval testing set is provided below:
304
+
305
+ | Model | Avg. | STEM | Social Sciences | Humanities | Others |
306
+ | :---------------------: | :------: | :--: | :-------------: | :--------: | :----: |
307
+ | Chinese-Alpaca-Plus-13B | 41.5 | 36.6 | 49.7 | 43.1 | 41.2 |
308
+ | Chinese-Alpaca-2-7B | 40.3 | - | - | - | - |
309
+ | ChatGLM2-6B-Chat | 50.1 | 46.4 | 60.4 | 50.6 | 46.9 |
310
+ | Baichuan-13B-Chat | 51.5 | 43.7 | 64.6 | 56.2 | 49.2 |
311
+ | **Qwen-1.8B-Chat** | 53.8 | 48.4 | 68.0 | 56.5 | 48.3 |
312
+ | **Qwen-7B-Chat** | 58.6 | 53.3 | 72.1 | 62.8 | 52.0 |
313
+
314
+ ### 英文评测(English Evaluation)
315
+
316
+ #### MMLU
317
+
318
+ [MMLU](https://arxiv.org/abs/2009.03300)评测集上,Qwen-1.8B-Chat模型的准确率如下,效果同样在同类对齐模型中同样表现较优。
319
+
320
+ The accuracy of Qwen-1.8B-Chat on MMLU is provided below.
321
+ The performance of Qwen-1.8B-Chat still on the top between other human-aligned models with comparable size.
322
+
323
+ | Model | Acc. |
324
+ |:--------------------------------:|:---------:|
325
+ | Firefly-Bloom-1B4 | 23.8 |
326
+ | OpenBuddy-3B | 25.5 |
327
+ | RedPajama-INCITE-Chat-3B | 25.5 |
328
+ | OpenLLaMA-Chinese-3B | 25.7 |
329
+ | ChatGLM2-6B-Chat | 46.0 |
330
+ | LLaMA2-7B-Chat | 46.2 |
331
+ | InternLM-7B-Chat | 51.1 |
332
+ | Baichuan2-7B-Chat | 52.9 |
333
+ | **Qwen-1.8B-Chat (0-shot)** | 43.3 |
334
+ | **Qwen-7B-Chat (0-shot)** | 55.8 |
335
+ | **Qwen-7B-Chat (5-shot)** | 57.0 |
336
+
337
+ ### 代码评测(Coding Evaluation)
338
+
339
+ Qwen-1.8B-Chat在[HumanEval](https://github.com/openai/human-eval)的zero-shot Pass@1效果如下
340
+
341
+ The zero-shot Pass@1 of Qwen-1.8B-Chat on [HumanEval](https://github.com/openai/human-eval) is demonstrated below
342
+
343
+ | Model | Pass@1 |
344
+ |:------------------------:|:------:|
345
+ | Firefly-Bloom-1B4 | 0.6 |
346
+ | OpenLLaMA-Chinese-3B | 4.9 |
347
+ | RedPajama-INCITE-Chat-3B | 6.1 |
348
+ | OpenBuddy-3B | 10.4 |
349
+ | ChatGLM2-6B-Chat | 11.0 |
350
+ | LLaMA2-7B-Chat | 12.2 |
351
+ | Baichuan2-7B-Chat | 13.4 |
352
+ | InternLM-7B-Chat | 14.6 |
353
+ | **Qwen-1.8B-Chat** | 26.2 |
354
+ | **Qwen-7B-Chat** | 37.2 |
355
+
356
+ ### 数学评测(Mathematics Evaluation)
357
+
358
+ 在评测数学能力的[GSM8K](https://github.com/openai/grade-school-math)上,Qwen-1.8B-Chat的准确率结果如下
359
+
360
+ The accuracy of Qwen-1.8B-Chat on GSM8K is shown below
361
+
362
+ | Model | Acc. |
363
+ |:------------------------------------:|:--------:|
364
+ | Firefly-Bloom-1B4 | 2.4 |
365
+ | RedPajama-INCITE-Chat-3B | 2.5 |
366
+ | OpenLLaMA-Chinese-3B | 3.0 |
367
+ | OpenBuddy-3B | 12.6 |
368
+ | LLaMA2-7B-Chat | 26.3 |
369
+ | ChatGLM2-6B-Chat | 28.8 |
370
+ | Baichuan2-7B-Chat | 32.8 |
371
+ | InternLM-7B-Chat | 33.0 |
372
+ | **Qwen-1.8B-Chat (0-shot)** | 33.7 |
373
+ | **Qwen-7B-Chat (0-shot)** | 50.3 |
374
+ | **Qwen-7B-Chat (8-shot)** | 54.1 |
375
+
376
+ ## 评测复现(Reproduction)
377
+
378
+ 我们提供了评测脚本,方便大家复现模型效果,详见[链接](https://github.com/QwenLM/Qwen/tree/main/eval)。提示:由于硬件和框架造成的舍入误差,复现结果如有小幅波动属于正常现象。
379
+
380
+ We have provided evaluation scripts to reproduce the performance of our model, details as [link](https://github.com/QwenLM/Qwen/tree/main/eval).
381
+ <br>
382
+
383
+ ## FAQ
384
+
385
+ 如遇到问题,敬请查阅[FAQ](https://github.com/QwenLM/Qwen/blob/main/FAQ_zh.md)以及issue区,如仍无法解决再提交issue。
386
+
387
+ If you meet problems, please refer to [FAQ](https://github.com/QwenLM/Qwen/blob/main/FAQ.md) and the issues first to search a solution before you launch a new issue.
388
+ <br>
389
+
390
+ ## 引用 (Citation)
391
+
392
+ 如果你觉得我们的工作对你有帮助,欢迎引用!
393
+
394
+ If you find our work helpful, feel free to give us a cite.
395
+
396
+ ```
397
+ @article{qwen,
398
+ title={Qwen Technical Report},
399
+ author={Jinze Bai and Shuai Bai and Yunfei Chu and Zeyu Cui and Kai Dang and Xiaodong Deng and Yang Fan and Wenbin Ge and Yu Han and Fei Huang and Binyuan Hui and Luo Ji and Mei Li and Junyang Lin and Runji Lin and Dayiheng Liu and Gao Liu and Chengqiang Lu and Keming Lu and Jianxin Ma and Rui Men and Xingzhang Ren and Xuancheng Ren and Chuanqi Tan and Sinan Tan and Jianhong Tu and Peng Wang and Shijie Wang and Wei Wang and Shengguang Wu and Benfeng Xu and Jin Xu and An Yang and Hao Yang and Jian Yang and Shusheng Yang and Yang Yao and Bowen Yu and Hongyi Yuan and Zheng Yuan and Jianwei Zhang and Xingxuan Zhang and Yichang Zhang and Zhenru Zhang and Chang Zhou and Jingren Zhou and Xiaohuan Zhou and Tianhang Zhu},
400
+ journal={arXiv preprint arXiv:2309.16609},
401
+ year={2023}
402
+ }
403
+ ```
404
+ <br>
405
+
406
+ ## 使用协议(License Agreement)
407
+
408
+ 我们的代码和模型权重对学术研究完全开放。请查看[LICENSE](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20RESEARCH%20LICENSE%20AGREEMENT)文件了解具体的开源协议细节。如需商用,请联系我们。
409
+
410
+ Our code and checkpoints are open to research purpose. Check the [LICENSE](https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20RESEARCH%20LICENSE%20AGREEMENT) for more details about the license. For commercial use, please contact us.
411
+ <br>
412
+
413
+ ## 联系我们(Contact Us)
414
+
415
+ 如果你想给我们的研发团队和产品团队留言,欢迎加入我们的微信群、钉钉群以及Discord!同时,也欢迎通过邮件([email protected])联系我们。
416
+
417
+ If you are interested to leave a message to either our research team or product team, join our Discord or WeChat groups! Also, feel free to send an email to [email protected].
418
+
Qwen/Qwen-1_8B-Chat/assets/logo.jpg ADDED
Qwen/Qwen-1_8B-Chat/assets/qwen_tokenizer.png ADDED
Qwen/Qwen-1_8B-Chat/assets/react_showcase_001.png ADDED
Qwen/Qwen-1_8B-Chat/assets/react_showcase_002.png ADDED
Qwen/Qwen-1_8B-Chat/assets/wechat.png ADDED
Qwen/Qwen-1_8B-Chat/cache_autogptq_cuda_256.cpp ADDED
@@ -0,0 +1,198 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #include <torch/all.h>
2
+ #include <torch/python.h>
3
+ #include <c10/cuda/CUDAGuard.h>
4
+
5
+ // adapted from https://github.com/PanQiWei/AutoGPTQ/blob/main/autogptq_extension/cuda_256/autogptq_cuda_256.cpp
6
+ void vecquant8matmul_cuda(
7
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
8
+ torch::Tensor scales, torch::Tensor zeros,
9
+ torch::Tensor g_idx
10
+ );
11
+
12
+ void vecquant8matmul(
13
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
14
+ torch::Tensor scales, torch::Tensor zeros,
15
+ torch::Tensor g_idx
16
+ ) {
17
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
18
+ vecquant8matmul_cuda(vec, mat, mul, scales, zeros, g_idx);
19
+ }
20
+
21
+ void vecquant8matmul_batched_cuda(
22
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
23
+ torch::Tensor scales, torch::Tensor zeros
24
+ );
25
+
26
+ void vecquant8matmul_batched(
27
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
28
+ torch::Tensor scales, torch::Tensor zeros
29
+ ) {
30
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
31
+ vecquant8matmul_batched_cuda(vec, mat, mul, scales, zeros);
32
+ }
33
+
34
+ void vecquant8matmul_batched_column_compression_cuda(
35
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
36
+ torch::Tensor scales, torch::Tensor zeros
37
+ );
38
+
39
+ void vecquant8matmul_batched_column_compression(
40
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
41
+ torch::Tensor scales, torch::Tensor zeros
42
+ ) {
43
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
44
+ vecquant8matmul_batched_column_compression_cuda(vec, mat, mul, scales, zeros);
45
+ }
46
+
47
+ void vecquant4matmul_batched_cuda(
48
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
49
+ torch::Tensor scales, torch::Tensor zeros
50
+ );
51
+
52
+ void vecquant4matmul_batched(
53
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
54
+ torch::Tensor scales, torch::Tensor zeros
55
+ ) {
56
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
57
+ vecquant4matmul_batched_cuda(vec, mat, mul, scales, zeros);
58
+ }
59
+
60
+ void vecquant4matmul_batched_column_compression_cuda(
61
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
62
+ torch::Tensor scales, torch::Tensor zeros
63
+ );
64
+
65
+ void vecquant4matmul_batched_column_compression(
66
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
67
+ torch::Tensor scales, torch::Tensor zeros
68
+ ) {
69
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
70
+ vecquant4matmul_batched_column_compression_cuda(vec, mat, mul, scales, zeros);
71
+ }
72
+
73
+ void vecquant8matmul_batched_old_cuda(
74
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
75
+ torch::Tensor scales, torch::Tensor zeros
76
+ );
77
+
78
+ void vecquant8matmul_batched_old(
79
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
80
+ torch::Tensor scales, torch::Tensor zeros
81
+ ) {
82
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
83
+ vecquant8matmul_batched_old_cuda(vec, mat, mul, scales, zeros);
84
+ }
85
+
86
+
87
+ void vecquant4matmul_batched_old_cuda(
88
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
89
+ torch::Tensor scales, torch::Tensor zeros
90
+ );
91
+
92
+ void vecquant4matmul_batched_old(
93
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
94
+ torch::Tensor scales, torch::Tensor zeros
95
+ ) {
96
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
97
+ vecquant4matmul_batched_old_cuda(vec, mat, mul, scales, zeros);
98
+ }
99
+
100
+ void vecquant8matmul_batched_column_compression_old_cuda(
101
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
102
+ torch::Tensor scales, torch::Tensor zeros
103
+ );
104
+
105
+ void vecquant8matmul_batched_column_compression_old(
106
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
107
+ torch::Tensor scales, torch::Tensor zeros
108
+ ) {
109
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
110
+ vecquant8matmul_batched_column_compression_old_cuda(vec, mat, mul, scales, zeros);
111
+ }
112
+
113
+ void vecquant4matmul_batched_column_compression_old_cuda(
114
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
115
+ torch::Tensor scales, torch::Tensor zeros
116
+ );
117
+
118
+ void vecquant4matmul_batched_column_compression_old(
119
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
120
+ torch::Tensor scales, torch::Tensor zeros
121
+ ) {
122
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
123
+ vecquant4matmul_batched_column_compression_old_cuda(vec, mat, mul, scales, zeros);
124
+ }
125
+
126
+
127
+
128
+ void vecquant8matmul_batched_faster_cuda(
129
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
130
+ torch::Tensor scales, torch::Tensor zeros
131
+ );
132
+
133
+ void vecquant8matmul_batched_faster(
134
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
135
+ torch::Tensor scales, torch::Tensor zeros
136
+ ) {
137
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
138
+ vecquant8matmul_batched_faster_cuda(vec, mat, mul, scales, zeros);
139
+ }
140
+
141
+
142
+ void vecquant8matmul_batched_faster_old_cuda(
143
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
144
+ torch::Tensor scales, torch::Tensor zeros
145
+ );
146
+
147
+ void vecquant8matmul_batched_faster_old(
148
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
149
+ torch::Tensor scales, torch::Tensor zeros
150
+ ) {
151
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
152
+ vecquant8matmul_batched_faster_old_cuda(vec, mat, mul, scales, zeros);
153
+ }
154
+
155
+ void vecquant8matmul_batched_column_compression_faster_cuda(
156
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
157
+ torch::Tensor scales, torch::Tensor zeros
158
+ );
159
+
160
+ void vecquant8matmul_batched_column_compression_faster(
161
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
162
+ torch::Tensor scales, torch::Tensor zeros
163
+ ) {
164
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
165
+ vecquant8matmul_batched_column_compression_faster_cuda(vec, mat, mul, scales, zeros);
166
+ }
167
+
168
+
169
+ void vecquant8matmul_batched_column_compression_faster_old_cuda(
170
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
171
+ torch::Tensor scales, torch::Tensor zeros
172
+ );
173
+
174
+ void vecquant8matmul_batched_column_compression_faster_old(
175
+ torch::Tensor vec, torch::Tensor mat, torch::Tensor mul,
176
+ torch::Tensor scales, torch::Tensor zeros
177
+ ) {
178
+ const at::cuda::OptionalCUDAGuard device_guard(device_of(vec));
179
+ vecquant8matmul_batched_column_compression_faster_old_cuda(vec, mat, mul, scales, zeros);
180
+ }
181
+
182
+
183
+
184
+ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
185
+ m.def("vecquant8matmul", &vecquant8matmul, "Vector 8-bit Quantized Matrix Multiplication (CUDA) (desc_act)");
186
+ m.def("vecquant8matmul_batched", &vecquant8matmul_batched, "Vector 8-bit Batched Quantized Matrix Multiplication (CUDA) (desc_act)");
187
+ m.def("vecquant8matmul_batched_old", &vecquant8matmul_batched_old, "Vector 8-bit old Batched Quantized Matrix Multiplication (CUDA) (desc_act)");
188
+ m.def("vecquant8matmul_batched_faster", &vecquant8matmul_batched_faster, "Vector 8-bit old Batched Quantized Matrix Multiplication (CUDA) (desc_act)");
189
+ m.def("vecquant8matmul_batched_faster_old", &vecquant8matmul_batched_faster_old, "Vector 8-bit old Batched Quantized Matrix Multiplication (CUDA) (desc_act)");
190
+ m.def("vecquant4matmul_batched_old", &vecquant4matmul_batched_old, "Vector 4-bit old Batched Quantized Matrix Multiplication (CUDA) (desc_act)");
191
+ m.def("vecquant8matmul_batched_column_compression", &vecquant8matmul_batched_column_compression, "Vector 8-bit Batched Quantized Matrix Multiplication (CUDA) with weight's column compressed (desc_act)");
192
+ m.def("vecquant8matmul_batched_column_compression_old", &vecquant8matmul_batched_column_compression_old, "Vector old 8-bit Batched Quantized Matrix Multiplication (CUDA) with weight's column compressed (desc_act)");
193
+ m.def("vecquant8matmul_batched_column_compression_faster", &vecquant8matmul_batched_column_compression_faster, "Vector old 8-bit Batched Quantized Matrix Multiplication (CUDA) with weight's column compressed (desc_act)");
194
+ m.def("vecquant8matmul_batched_column_compression_faster_old", &vecquant8matmul_batched_column_compression_faster_old, "Vector old 8-bit Batched Quantized Matrix Multiplication (CUDA) with weight's column compressed (desc_act)");
195
+ m.def("vecquant4matmul_batched_column_compression_old", &vecquant4matmul_batched_column_compression_old, "Vector old 4-bit Batched Quantized Matrix Multiplication (CUDA) with weight's column compressed (desc_act)");
196
+ m.def("vecquant4matmul_batched", &vecquant4matmul_batched, "Vector 4-bit Batched Quantized Matrix Multiplication (CUDA) (desc_act)");
197
+ m.def("vecquant4matmul_batched_column_compression", &vecquant4matmul_batched_column_compression, "Vector 4-bit Batched Quantized Matrix Multiplication (CUDA) with weight's column compressed (desc_act)");
198
+ }
Qwen/Qwen-1_8B-Chat/cache_autogptq_cuda_kernel_256.cu ADDED
@@ -0,0 +1,1708 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #define _CRT_SECURE_NO_WARNINGS
2
+ #include <torch/all.h>
3
+ #include <torch/python.h>
4
+ #include <cuda.h>
5
+ #include <cuda_runtime.h>
6
+ #include <cuda_fp16.h>
7
+ #include <stdint.h>
8
+
9
+ #if (defined(__CUDA_ARCH__) && __CUDA_ARCH__ < 700) || defined(USE_ROCM)
10
+ // adapted from https://github.com/PanQiWei/AutoGPTQ/blob/main/autogptq_extension/cuda_256/autogptq_cuda_kernel_256.cu
11
+ __device__ __forceinline__ void atomicAdd(c10::Half* address, c10::Half val) {
12
+ unsigned int *address_as_ui = reinterpret_cast<unsigned int *>(reinterpret_cast<char *>(address) - (reinterpret_cast<size_t>(address) & 2));
13
+ unsigned int old = *address_as_ui;
14
+ unsigned int assumed;
15
+
16
+ do {
17
+ assumed = old;
18
+ unsigned short hsum = reinterpret_cast<size_t>(address) & 2 ? (old >> 16) : (old & 0xffff);
19
+ hsum += val;
20
+ old = reinterpret_cast<size_t>(address) & 2
21
+ ? (old & 0xffff) | (hsum << 16)
22
+ : (old & 0xffff0000) | hsum;
23
+ old = atomicCAS(address_as_ui, assumed, old);
24
+
25
+ // Note: uses integer comparison to avoid hang in case of NaN (since NaN != NaN)
26
+ } while (assumed != old);
27
+ }
28
+ __device__ __forceinline__ void atomicAdd(__half* address, c10::Half val) {
29
+ unsigned int * address_as_ui = (unsigned int *) ((char *)address - ((size_t)address & 2));
30
+ unsigned int old = *address_as_ui;
31
+ unsigned int assumed;
32
+
33
+ do {
34
+ assumed = old;
35
+ __half_raw hsum;
36
+ hsum.x = (size_t)address & 2 ? (old >> 16) : (old & 0xffff);
37
+ half tmpres = __hadd(hsum, val);
38
+ hsum = __half_raw(tmpres);
39
+ old = (size_t)address & 2 ? (old & 0xffff) | (hsum.x << 16) : (old & 0xffff0000) | hsum.x;
40
+ old = atomicCAS(address_as_ui, assumed, old);
41
+ } while (assumed != old);
42
+ }
43
+ #endif
44
+
45
+ template <typename scalar_t>
46
+ __global__ void VecQuant8MatMulKernel(
47
+ const scalar_t* __restrict__ vec,
48
+ const int* __restrict__ mat,
49
+ scalar_t* __restrict__ mul,
50
+ const scalar_t* __restrict__ scales,
51
+ const int* __restrict__ zeros,
52
+ const int* __restrict__ g_idx,
53
+ int batch,
54
+ int vec_height,
55
+ int height,
56
+ int width,
57
+ int zero_width
58
+ );
59
+
60
+ template <typename scalar_t>
61
+ __global__ void VecQuant8BatchMatMulColumnCompressionKernel(
62
+ const scalar_t* __restrict__ vec,
63
+ const int* __restrict__ mat,
64
+ scalar_t* __restrict__ mul,
65
+ const scalar_t* __restrict__ scales,
66
+ const int* __restrict__ zeros,
67
+ int batch,
68
+ int heads,
69
+ int vec_row,
70
+ int height,
71
+ int width
72
+ );
73
+
74
+ template <typename scalar_t>
75
+ __global__ void VecQuant4BatchMatMulColumnCompressionKernel(
76
+ const scalar_t* __restrict__ vec,
77
+ const int* __restrict__ mat,
78
+ scalar_t* __restrict__ mul,
79
+ const scalar_t* __restrict__ scales,
80
+ const int* __restrict__ zeros,
81
+ int batch,
82
+ int heads,
83
+ int vec_row,
84
+ int height,
85
+ int width
86
+ );
87
+
88
+ template <typename scalar_t>
89
+ __global__ void VecQuant8BatchMatMulKernel(
90
+ const scalar_t* __restrict__ vec,
91
+ const int* __restrict__ mat,
92
+ scalar_t* __restrict__ mul,
93
+ const scalar_t* __restrict__ scales,
94
+ const int* __restrict__ zeros,
95
+ int batch,
96
+ int heads,
97
+ int vec_row,
98
+ int vec_height,
99
+ int height,
100
+ int width,
101
+ int zero_width
102
+ );
103
+
104
+ template <typename scalar_t>
105
+ __global__ void VecQuant4BatchMatMulKernel(
106
+ const scalar_t* __restrict__ vec,
107
+ const int* __restrict__ mat,
108
+ scalar_t* __restrict__ mul,
109
+ const scalar_t* __restrict__ scales,
110
+ const int* __restrict__ zeros,
111
+ int batch,
112
+ int heads,
113
+ int vec_row,
114
+ int vec_height,
115
+ int height,
116
+ int width,
117
+ int zero_width
118
+ );
119
+
120
+
121
+
122
+ template <typename scalar_t>
123
+ __global__ void VecQuant8BatchMatMulKernel_old(
124
+ const scalar_t* __restrict__ vec,
125
+ const uint8_t* __restrict__ mat,
126
+ scalar_t* __restrict__ mul,
127
+ const scalar_t* __restrict__ scales,
128
+ const scalar_t* __restrict__ zeros,
129
+ int batch,
130
+ int heads,
131
+ int vec_row,
132
+ int vec_height,
133
+ int height,
134
+ int width,
135
+ int zero_width
136
+ );
137
+
138
+ __global__ void VecQuant8BatchMatMulKernel_faster(
139
+ const half* __restrict__ vec,
140
+ const uint8_t* __restrict__ mat,
141
+ half* __restrict__ mul,
142
+ const half* __restrict__ scales,
143
+ const half* __restrict__ zeros,
144
+ int batch,
145
+ int heads,
146
+ int vec_row,
147
+ int vec_height,
148
+ int height,
149
+ int width,
150
+ int zero_width
151
+ );
152
+
153
+
154
+
155
+ __global__ void VecQuant8BatchMatMulKernel_faster_old(
156
+ const half* __restrict__ vec,
157
+ const uint8_t* __restrict__ mat,
158
+ half* __restrict__ mul,
159
+ const half* __restrict__ scales,
160
+ const half* __restrict__ zeros,
161
+ int batch,
162
+ int heads,
163
+ int vec_row,
164
+ int vec_height,
165
+ int height,
166
+ int width
167
+ );
168
+
169
+
170
+ template <typename scalar_t>
171
+ __global__ void VecQuant4BatchMatMulKernel_old(
172
+ const scalar_t* __restrict__ vec,
173
+ const uint8_t* __restrict__ mat,
174
+ scalar_t* __restrict__ mul,
175
+ const scalar_t* __restrict__ scales,
176
+ const scalar_t* __restrict__ zeros,
177
+ int batch,
178
+ int heads,
179
+ int vec_row,
180
+ int vec_height,
181
+ int height,
182
+ int width,
183
+ int zero_width
184
+ );
185
+
186
+
187
+ template <typename scalar_t>
188
+ __global__ void VecQuant8BatchMatMulColumnCompressionKernel_old(
189
+ const scalar_t* __restrict__ vec,
190
+ const uint8_t* __restrict__ mat,
191
+ scalar_t* __restrict__ mul,
192
+ const scalar_t* __restrict__ scales,
193
+ const scalar_t* __restrict__ zeros,
194
+ int batch,
195
+ int heads,
196
+ int vec_row,
197
+ int height,
198
+ int width
199
+ );
200
+
201
+ __global__ void VecQuant8BatchMatMulColumnCompressionKernel_faster(
202
+ const half* __restrict__ vec,
203
+ const uint8_t* __restrict__ mat,
204
+ half* __restrict__ mul,
205
+ const half* __restrict__ scales,
206
+ const half* __restrict__ zeros,
207
+ int batch,
208
+ int heads,
209
+ int vec_row,
210
+ int height,
211
+ int width
212
+ );
213
+
214
+ __global__ void VecQuant8BatchMatMulColumnCompressionKernel_faster_old(
215
+ const half* __restrict__ vec,
216
+ const uint8_t* __restrict__ mat,
217
+ half* __restrict__ mul,
218
+ const half* __restrict__ scales,
219
+ const half* __restrict__ zeros,
220
+ int batch,
221
+ int heads,
222
+ int vec_row,
223
+ int height,
224
+ int width
225
+ );
226
+
227
+
228
+ template <typename scalar_t>
229
+ __global__ void VecQuant4BatchMatMulColumnCompressionKernel_old(
230
+ const scalar_t* __restrict__ vec,
231
+ const uint8_t* __restrict__ mat,
232
+ scalar_t* __restrict__ mul,
233
+ const scalar_t* __restrict__ scales,
234
+ const scalar_t* __restrict__ zeros,
235
+ int batch,
236
+ int heads,
237
+ int vec_row,
238
+ int height,
239
+ int width
240
+ );
241
+
242
+
243
+ __global__ void VecQuant8BatchMatMulKernel_faster(
244
+ const half* __restrict__ vec,
245
+ const uint8_t* __restrict__ mat,
246
+ half* __restrict__ mul,
247
+ const half* __restrict__ scales,
248
+ const half* __restrict__ zeros,
249
+ int batch,
250
+ int heads,
251
+ int vec_row,
252
+ int vec_height,
253
+ int height,
254
+ int width
255
+ );
256
+
257
+
258
+ __global__ void VecQuant8BatchMatMulColumnCompressionKernel_faster(
259
+ const half* __restrict__ vec,
260
+ const uint8_t* __restrict__ mat,
261
+ half* __restrict__ mul,
262
+ const half* __restrict__ scales,
263
+ const half* __restrict__ zeros,
264
+ int batch,
265
+ int heads,
266
+ int vec_row,
267
+ int height,
268
+ int width
269
+ );
270
+
271
+ const int BLOCKWIDTH = 128;
272
+ const int BLOCKHEIGHT8 = 32;
273
+ const int BLOCKHEIGHT4 = 16;
274
+ const int BLOCKHEIGHT_OLD4 = 128;
275
+ //const int BLOCKHEIGHT_OLD8 = 128;
276
+
277
+ __device__ inline unsigned int as_unsigned(int i) {
278
+ return *reinterpret_cast<unsigned int*>(&i);
279
+ }
280
+
281
+ __device__ inline int as_int(int i) {
282
+ return *reinterpret_cast<int*>(&i);
283
+ }
284
+
285
+ void vecquant8matmul_batched_column_compression_cuda(
286
+ torch::Tensor vec,
287
+ torch::Tensor mat,
288
+ torch::Tensor mul,
289
+ torch::Tensor scales,
290
+ torch::Tensor zeros
291
+ ) {
292
+ int batch = vec.size(0);
293
+ int heads = vec.size(1);
294
+ int vec_row = vec.size(2);
295
+ int height = vec.size(3);
296
+ int width = mat.size(3) * 4;
297
+
298
+ dim3 blocks(
299
+ (height + BLOCKWIDTH - 1) / BLOCKWIDTH,
300
+ (width + BLOCKWIDTH - 1) / BLOCKWIDTH
301
+ );
302
+ dim3 threads(BLOCKWIDTH);
303
+
304
+ AT_DISPATCH_FLOATING_TYPES(
305
+ vec.type(), "vecquant8matmul_batched_cuda", ([&] {
306
+ VecQuant8BatchMatMulColumnCompressionKernel<<<blocks, threads>>>(
307
+ vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(),
308
+ scales.data<scalar_t>(), zeros.data<int>(),
309
+ batch, heads, vec_row, height, width
310
+ );
311
+ })
312
+ );
313
+
314
+ }
315
+
316
+ template <typename scalar_t>
317
+ __global__ void VecQuant8BatchMatMulColumnCompressionKernel(
318
+ const scalar_t* __restrict__ vec,
319
+ const int* __restrict__ mat,
320
+ scalar_t* __restrict__ mul,
321
+ const scalar_t* __restrict__ scales,
322
+ const int* __restrict__ zeros,
323
+ int batch,
324
+ int heads,
325
+ int vec_row,
326
+ int height,
327
+ int width
328
+ ) {
329
+ int weight_total = batch * heads * height * width / 4;
330
+ int input_total = batch * heads * vec_row * height;
331
+ int out_total = batch * heads * vec_row * width;
332
+ int tid = threadIdx.x;
333
+ // h is index of height with step being BLOCKWIDTH
334
+ int h = BLOCKWIDTH * blockIdx.x;
335
+ // w is index of width with step being 1
336
+ int w = BLOCKWIDTH * blockIdx.y + tid;
337
+ if (w >= width && tid >= height) {
338
+ return;
339
+ }
340
+
341
+ __shared__ scalar_t blockvec[BLOCKWIDTH];
342
+ int k;
343
+ scalar_t w_tmp;
344
+
345
+ float weight[BLOCKWIDTH];
346
+
347
+ for (int b = 0; b < batch; ++b){
348
+ for (int head = 0; head < heads; ++head){
349
+ int batch_shift = b * heads + head;
350
+ for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){
351
+ int i_w = (w / 4);
352
+ int w_bit = (w % 4) * 8;
353
+
354
+ int w_index = (batch_shift * height + h + k) * width / 4 + i_w;
355
+ if (w_index >= weight_total || w >= width) {
356
+ weight[k] = 0;
357
+ } else {
358
+ scalar_t scale = scales[batch_shift * height + h + k];
359
+ scalar_t zero = zeros[batch_shift * height + h + k];
360
+ w_tmp = ((as_unsigned(mat[w_index]) >> w_bit) & 0xFF);
361
+ weight[k] = scale * (w_tmp - zero);
362
+ }
363
+ }
364
+
365
+ scalar_t res;
366
+ for (int vr = 0; vr < vec_row; ++vr){
367
+ res = 0;
368
+ int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
369
+ if (vec_index < input_total) {
370
+ blockvec[tid] = vec[vec_index];
371
+ } else {
372
+ blockvec[tid] = 0;
373
+ }
374
+
375
+ __syncthreads();
376
+ for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){
377
+ // res is the dot product of BLOCKWIDTH elements (part of width)
378
+ res += weight[k] * blockvec[k];
379
+ }
380
+ // add res to the final result, final matrix shape: (batch, vec_row, width)
381
+ int out_index = (batch_shift * vec_row + vr) * width + w;
382
+ if (out_index < out_total) {
383
+ atomicAdd(&mul[out_index], res);
384
+ }
385
+ __syncthreads();
386
+ }
387
+ }
388
+ }
389
+ }
390
+
391
+ void vecquant8matmul_batched_cuda(
392
+ torch::Tensor vec,
393
+ torch::Tensor mat,
394
+ torch::Tensor mul,
395
+ torch::Tensor scales,
396
+ torch::Tensor zeros
397
+ ) {
398
+ int batch = vec.size(0);
399
+ int heads = vec.size(1);
400
+ int vec_row = vec.size(2);
401
+ int vec_height = vec.size(3);
402
+ int height = mat.size(2);
403
+ int width = mat.size(3);
404
+ int zero_width = zeros.size(2);
405
+
406
+ dim3 blocks(
407
+ (height + BLOCKHEIGHT8 - 1) / BLOCKHEIGHT8,
408
+ (width + BLOCKWIDTH - 1) / BLOCKWIDTH
409
+ );
410
+ dim3 threads(BLOCKWIDTH);
411
+
412
+ AT_DISPATCH_FLOATING_TYPES(
413
+ vec.type(), "vecquant8matmul_batched_cuda", ([&] {
414
+ VecQuant8BatchMatMulKernel<<<blocks, threads>>>(
415
+ vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(),
416
+ scales.data<scalar_t>(), zeros.data<int>(),
417
+ batch, heads, vec_row, vec_height, height, width, zero_width
418
+ );
419
+ })
420
+ );
421
+
422
+ }
423
+
424
+ template <typename scalar_t>
425
+ __global__ void VecQuant8BatchMatMulKernel(
426
+ const scalar_t* __restrict__ vec,
427
+ const int* __restrict__ mat,
428
+ scalar_t* __restrict__ mul,
429
+ const scalar_t* __restrict__ scales,
430
+ const int* __restrict__ zeros,
431
+ int batch,
432
+ int heads,
433
+ int vec_row,
434
+ int vec_height,
435
+ int height,
436
+ int width,
437
+ int zero_width
438
+ ) {
439
+ int weight_total = batch * heads * height * width;
440
+ int input_total = batch * heads * vec_row * vec_height;
441
+ int out_total = batch * heads * vec_row * width;
442
+ int tid = threadIdx.x;
443
+ // h is index of height with step being BLOCKHEIGHT8
444
+ int h = BLOCKHEIGHT8 * blockIdx.x;
445
+ // w is index of width with step being 1
446
+ int w = BLOCKWIDTH * blockIdx.y + tid;
447
+ if (w >= width && tid >= vec_height) {
448
+ return;
449
+ }
450
+
451
+ __shared__ scalar_t blockvec[BLOCKWIDTH];
452
+ // i is index of mat of block first row
453
+ int i = width * h + w;
454
+ // if (i >= width * height) {
455
+ // return;
456
+ // }
457
+ int k;
458
+ scalar_t w_tmp;
459
+
460
+ int z_w = w / 4;
461
+ int z_mod = (w % 4) * 8;
462
+
463
+ float weight[BLOCKWIDTH];
464
+
465
+ for (int b = 0; b < batch; ++b){
466
+ for (int head = 0; head < heads; ++head){
467
+ int batch_shift = b * heads + head;
468
+ for (k = 0; k < BLOCKWIDTH && h * 4 + k < vec_height; ++k){
469
+ int k_w = (k / 4);
470
+ int k_bit = (k % 4) * 8;
471
+
472
+ int w_index = batch_shift * height * width + i + (k_w * width);
473
+ if (w_index >= weight_total || w >= width) {
474
+ weight[k] = 0;
475
+ } else {
476
+ scalar_t scale = scales[batch_shift * width + w];
477
+ scalar_t zero;
478
+ if (zero_width == width) {
479
+ zero = zeros[batch_shift * width + w];
480
+ } else {
481
+ zero = scalar_t(((as_unsigned(zeros[batch_shift * zero_width + z_w]) >> z_mod) & 0xFF) + 1);
482
+ }
483
+ w_tmp = ((as_unsigned(mat[w_index]) >> k_bit) & 0xFF);
484
+ weight[k] = scale * (w_tmp - zero);
485
+ }
486
+ }
487
+
488
+ scalar_t res;
489
+ for (int vr = 0; vr < vec_row; ++vr){
490
+ res = 0;
491
+ int vec_index = (batch_shift * vec_row + vr) * vec_height + blockIdx.x * BLOCKWIDTH + tid;
492
+ if (vec_index < input_total) {
493
+ blockvec[tid] = vec[vec_index];
494
+ } else {
495
+ blockvec[tid] = 0;
496
+ }
497
+
498
+ __syncthreads();
499
+ for (k = 0; k < BLOCKWIDTH && h * 4 + k < vec_height; ++k){
500
+ // res is the dot product of BLOCKWIDTH elements (part of width)
501
+ res += weight[k] * blockvec[k];
502
+ }
503
+ // add res to the final result, final matrix shape: (batch, vec_row, width)
504
+ int out_index = (batch_shift * vec_row + vr) * width + w;
505
+ if (out_index < out_total) {
506
+ atomicAdd(&mul[out_index], res);
507
+ }
508
+ __syncthreads();
509
+ }
510
+ }
511
+ }
512
+ }
513
+
514
+
515
+ void vecquant8matmul_cuda(
516
+ torch::Tensor vec,
517
+ torch::Tensor mat,
518
+ torch::Tensor mul,
519
+ torch::Tensor scales,
520
+ torch::Tensor zeros,
521
+ torch::Tensor g_idx
522
+ ) {
523
+ int batch = vec.size(0);
524
+ int vec_height = vec.size(1);
525
+ int height = mat.size(0);
526
+ int width = mat.size(1);
527
+ int zero_width = zeros.size(1);
528
+
529
+ dim3 blocks(
530
+ (height + BLOCKHEIGHT8 - 1) / BLOCKHEIGHT8,
531
+ (width + BLOCKWIDTH - 1) / BLOCKWIDTH
532
+ );
533
+ dim3 threads(BLOCKWIDTH);
534
+
535
+ AT_DISPATCH_FLOATING_TYPES(
536
+ vec.type(), "vecquant8matmul_cuda", ([&] {
537
+ VecQuant8MatMulKernel<<<blocks, threads>>>(
538
+ vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(),
539
+ scales.data<scalar_t>(), zeros.data<int>(), g_idx.data<int>(),
540
+ batch, vec_height, height, width, zero_width
541
+ );
542
+ })
543
+ );
544
+ }
545
+
546
+ template <typename scalar_t>
547
+ __global__ void VecQuant8MatMulKernel(
548
+ const scalar_t* __restrict__ vec,
549
+ const int* __restrict__ mat,
550
+ scalar_t* __restrict__ mul,
551
+ const scalar_t* __restrict__ scales,
552
+ const int* __restrict__ zeros,
553
+ const int* __restrict__ g_idx,
554
+ int batch,
555
+ int vec_height,
556
+ int height,
557
+ int width,
558
+ int zero_width
559
+ ) {
560
+ int h = BLOCKHEIGHT8 * blockIdx.x;
561
+ int w = BLOCKWIDTH * blockIdx.y + threadIdx.x;
562
+
563
+ __shared__ scalar_t blockvec[BLOCKWIDTH];
564
+ int i = width * h + w;
565
+ int g_h = h * 4;
566
+ int k;
567
+ unsigned int g;
568
+ scalar_t w_tmp;
569
+
570
+ int z_w = w / 4;
571
+ int z_mod = (w % 4) * 8;
572
+
573
+ float weight[BLOCKWIDTH];
574
+
575
+ for (k = 0; k < BLOCKWIDTH; ++k){
576
+ int k_w = (k / 4);
577
+ int k_bit = (k % 4) * 8;
578
+
579
+ g = as_int(g_idx[g_h + k]);
580
+ scalar_t scale = scales[g * width + w];
581
+ scalar_t zero = scalar_t(((as_unsigned(zeros[g * zero_width + z_w]) >> z_mod) & 0xFF) + 1);
582
+
583
+ w_tmp = ((as_unsigned(mat[i + (k_w * width)]) >> k_bit) & 0xFF);
584
+
585
+ weight[k] = scale * (w_tmp - zero);
586
+ }
587
+
588
+
589
+ scalar_t res;
590
+ for (int b = 0; b < batch; ++b){
591
+ res = 0;
592
+ blockvec[threadIdx.x] = vec[b * vec_height + blockIdx.x * BLOCKWIDTH + threadIdx.x];
593
+ __syncthreads();
594
+ for (k = 0; k < BLOCKWIDTH; ++k){
595
+ res += weight[k] * blockvec[k];
596
+ }
597
+ atomicAdd(&mul[b * width + w], res);
598
+ __syncthreads();
599
+ }
600
+ }
601
+
602
+
603
+
604
+ void vecquant4matmul_batched_cuda(
605
+ torch::Tensor vec,
606
+ torch::Tensor mat,
607
+ torch::Tensor mul,
608
+ torch::Tensor scales,
609
+ torch::Tensor zeros
610
+ ) {
611
+ int batch = vec.size(0);
612
+ int heads = vec.size(1);
613
+ int vec_row = vec.size(2);
614
+ int vec_height = vec.size(3);
615
+ int height = mat.size(2);
616
+ int width = mat.size(3);
617
+ int zero_width = zeros.size(2);
618
+
619
+ dim3 blocks(
620
+ (height + BLOCKHEIGHT4 - 1) / BLOCKHEIGHT4,
621
+ (width + BLOCKWIDTH - 1) / BLOCKWIDTH
622
+ );
623
+ dim3 threads(BLOCKWIDTH);
624
+
625
+ AT_DISPATCH_FLOATING_TYPES(
626
+ vec.type(), "vecquant4matmul_batched_cuda", ([&] {
627
+ VecQuant4BatchMatMulKernel<<<blocks, threads>>>(
628
+ vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(),
629
+ scales.data<scalar_t>(), zeros.data<int>(),
630
+ batch, heads, vec_row, vec_height, height, width, zero_width
631
+ );
632
+ })
633
+ );
634
+
635
+ }
636
+
637
+ template <typename scalar_t>
638
+ __global__ void VecQuant4BatchMatMulKernel(
639
+ const scalar_t* __restrict__ vec,
640
+ const int* __restrict__ mat,
641
+ scalar_t* __restrict__ mul,
642
+ const scalar_t* __restrict__ scales,
643
+ const int* __restrict__ zeros,
644
+ int batch,
645
+ int heads,
646
+ int vec_row,
647
+ int vec_height,
648
+ int height,
649
+ int width,
650
+ int zero_width
651
+ ) {
652
+ int weight_total = batch * heads * height * width;
653
+ int input_total = batch * heads * vec_row * vec_height;
654
+ int out_total = batch * heads * vec_row * width;
655
+ int tid = threadIdx.x;
656
+ // h is index of height with step being BLOCKHEIGHT4
657
+ int h = BLOCKHEIGHT4 * blockIdx.x;
658
+ // w is index of width with step being 1
659
+ int w = BLOCKWIDTH * blockIdx.y + tid;
660
+ if (w >= width && tid >= vec_height) {
661
+ return;
662
+ }
663
+
664
+ __shared__ scalar_t blockvec[BLOCKWIDTH];
665
+ // i is index of mat of block first row
666
+ int i = width * h + w;
667
+ int k;
668
+ scalar_t w_tmp;
669
+
670
+ int z_w = w / 8;
671
+ int z_mod = (w % 8) * 4;
672
+
673
+ float weight[BLOCKWIDTH];
674
+
675
+ for (int b = 0; b < batch; ++b){
676
+ for (int head = 0; head < heads; ++head){
677
+ int batch_shift = b * heads + head;
678
+ for (k = 0; k < BLOCKWIDTH && h * 8 + k < vec_height; ++k){
679
+ int k_w = (k / 8);
680
+ int k_bit = (k % 8) * 4;
681
+
682
+ int w_index = batch_shift * height * width + i + (k_w * width);
683
+ if (w_index >= weight_total || w >= width) {
684
+ weight[k] = 0;
685
+ } else {
686
+ scalar_t scale = scales[batch_shift * width + w];
687
+ scalar_t zero;
688
+ if (zero_width == width) {
689
+ zero = zeros[batch_shift * width + w];
690
+ } else {
691
+ zero = scalar_t(((as_unsigned(zeros[batch_shift * zero_width + z_w]) >> z_mod) & 0xF));
692
+ }
693
+ w_tmp = ((as_unsigned(mat[w_index]) >> k_bit) & 0xF);
694
+ weight[k] = scale * (w_tmp - zero);
695
+ }
696
+ }
697
+
698
+ scalar_t res;
699
+ for (int vr = 0; vr < vec_row; ++vr){
700
+ res = 0;
701
+ int vec_index = (batch_shift * vec_row + vr) * vec_height + blockIdx.x * BLOCKWIDTH + tid;
702
+ if (vec_index < input_total) {
703
+ blockvec[tid] = vec[vec_index];
704
+ } else {
705
+ blockvec[tid] = 0;
706
+ }
707
+
708
+ __syncthreads();
709
+ for (k = 0; k < BLOCKWIDTH && h * 8 + k < vec_height; ++k){
710
+ // res is the dot product of BLOCKWIDTH elements (part of width)
711
+ res += weight[k] * blockvec[k];
712
+ }
713
+ // add res to the final result, final matrix shape: (batch, vec_row, width)
714
+ int out_index = (batch_shift * vec_row + vr) * width + w;
715
+ if (out_index < out_total) {
716
+ atomicAdd(&mul[out_index], res);
717
+ }
718
+ __syncthreads();
719
+ }
720
+ }
721
+ }
722
+ }
723
+
724
+
725
+
726
+ void vecquant4matmul_batched_column_compression_cuda(
727
+ torch::Tensor vec,
728
+ torch::Tensor mat,
729
+ torch::Tensor mul,
730
+ torch::Tensor scales,
731
+ torch::Tensor zeros
732
+ ) {
733
+ int batch = vec.size(0);
734
+ int heads = vec.size(1);
735
+ int vec_row = vec.size(2);
736
+ int height = vec.size(3);
737
+ int width = mat.size(3) * 8;
738
+
739
+ dim3 blocks(
740
+ (height + BLOCKWIDTH - 1) / BLOCKWIDTH,
741
+ (width + BLOCKWIDTH - 1) / BLOCKWIDTH
742
+ );
743
+ dim3 threads(BLOCKWIDTH);
744
+
745
+ AT_DISPATCH_FLOATING_TYPES(
746
+ vec.type(), "vecquant4matmul_batched_cuda", ([&] {
747
+ VecQuant4BatchMatMulColumnCompressionKernel<<<blocks, threads>>>(
748
+ vec.data<scalar_t>(), mat.data<int>(), mul.data<scalar_t>(),
749
+ scales.data<scalar_t>(), zeros.data<int>(),
750
+ batch, heads, vec_row, height, width
751
+ );
752
+ })
753
+ );
754
+
755
+ }
756
+
757
+ template <typename scalar_t>
758
+ __global__ void VecQuant4BatchMatMulColumnCompressionKernel(
759
+ const scalar_t* __restrict__ vec,
760
+ const int* __restrict__ mat,
761
+ scalar_t* __restrict__ mul,
762
+ const scalar_t* __restrict__ scales,
763
+ const int* __restrict__ zeros,
764
+ int batch,
765
+ int heads,
766
+ int vec_row,
767
+ int height,
768
+ int width
769
+ ) {
770
+ int weight_total = batch * heads * height * width / 8;
771
+ int input_total = batch * heads * vec_row * height;
772
+ int out_total = batch * heads * vec_row * width;
773
+ int tid = threadIdx.x;
774
+ // h is index of height with step being BLOCKWIDTH
775
+ int h = BLOCKWIDTH * blockIdx.x;
776
+ // w is index of width with step being 1
777
+ int w = BLOCKWIDTH * blockIdx.y + tid;
778
+ if (w >= width && tid >= height) {
779
+ return;
780
+ }
781
+
782
+ __shared__ scalar_t blockvec[BLOCKWIDTH];
783
+ int k;
784
+ scalar_t w_tmp;
785
+
786
+ float weight[BLOCKWIDTH];
787
+
788
+ for (int b = 0; b < batch; ++b){
789
+ for (int head = 0; head < heads; ++head){
790
+ int batch_shift = b * heads + head;
791
+ for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){
792
+ int i_w = (w / 8);
793
+ int w_bit = (w % 8) * 4;
794
+
795
+ int w_index = (batch_shift * height + h + k) * width / 8 + i_w;
796
+ if (w_index >= weight_total || w >= width) {
797
+ weight[k] = 0;
798
+ } else {
799
+ scalar_t scale = scales[batch_shift * height + h + k];
800
+ scalar_t zero = zeros[batch_shift * height + h + k];
801
+ w_tmp = ((as_unsigned(mat[w_index]) >> w_bit) & 0xF);
802
+ weight[k] = scale * (w_tmp - zero);
803
+ }
804
+ }
805
+
806
+ scalar_t res;
807
+ for (int vr = 0; vr < vec_row; ++vr){
808
+ res = 0;
809
+ int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
810
+ if (vec_index < input_total) {
811
+ blockvec[tid] = vec[vec_index];
812
+ } else {
813
+ blockvec[tid] = 0;
814
+ }
815
+
816
+ __syncthreads();
817
+ for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){
818
+ // res is the dot product of BLOCKWIDTH elements (part of width)
819
+ res += weight[k] * blockvec[k];
820
+ }
821
+ // add res to the final result, final matrix shape: (batch, vec_row, width)
822
+ int out_index = (batch_shift * vec_row + vr) * width + w;
823
+ if (out_index < out_total) {
824
+ atomicAdd(&mul[out_index], res);
825
+ }
826
+ __syncthreads();
827
+ }
828
+ }
829
+ }
830
+ }
831
+
832
+
833
+ void vecquant8matmul_batched_old_cuda(
834
+ torch::Tensor vec,
835
+ torch::Tensor mat,
836
+ torch::Tensor mul,
837
+ torch::Tensor scales,
838
+ torch::Tensor zeros
839
+ ) {
840
+ int batch = vec.size(0);
841
+ int heads = vec.size(1);
842
+ int vec_row = vec.size(2);
843
+ int vec_height = vec.size(3);
844
+ int height = mat.size(2);
845
+ int width = mat.size(3);
846
+ int zero_width = zeros.size(2);
847
+
848
+ dim3 blocks(
849
+ (height + BLOCKWIDTH - 1) / BLOCKWIDTH,
850
+ (width + BLOCKWIDTH - 1) / BLOCKWIDTH
851
+ );
852
+ dim3 threads(BLOCKWIDTH);
853
+
854
+ AT_DISPATCH_FLOATING_TYPES(
855
+ vec.type(), "vecquant8matmul_batched_old_cuda", ([&] {
856
+ VecQuant8BatchMatMulKernel_old<<<blocks, threads>>>(
857
+ vec.data<scalar_t>(), mat.data<uint8_t>(), mul.data<scalar_t>(),
858
+ scales.data<scalar_t>(), zeros.data<scalar_t>(),
859
+ batch, heads, vec_row, vec_height, height, width, zero_width
860
+ );
861
+ })
862
+ );
863
+ }
864
+
865
+
866
+ template <typename scalar_t>
867
+ __global__ void VecQuant8BatchMatMulKernel_old(
868
+ const scalar_t* __restrict__ vec,
869
+ const uint8_t* __restrict__ mat,
870
+ scalar_t* __restrict__ mul,
871
+ const scalar_t* __restrict__ scales,
872
+ const scalar_t* __restrict__ zeros,
873
+ int batch,
874
+ int heads,
875
+ int vec_row,
876
+ int vec_height,
877
+ int height,
878
+ int width,
879
+ int zero_width
880
+ ) {
881
+ int weight_total = batch * heads * height * width;
882
+ int input_total = batch * heads * vec_row * vec_height;
883
+ int out_total = batch * heads * vec_row * width;
884
+ int tid = threadIdx.x;
885
+ // h is index of height with step being BLOCKHEIGHT8
886
+ int h = BLOCKWIDTH * blockIdx.x;
887
+ // w is index of width with step being 1
888
+ int w = BLOCKWIDTH * blockIdx.y + tid;
889
+ if (w >= width && tid >= vec_height) {
890
+ return;
891
+ }
892
+
893
+ __shared__ scalar_t blockvec[BLOCKWIDTH];
894
+ // i is index of mat of block first row
895
+ int i = width * h + w;
896
+ int k;
897
+ scalar_t w_tmp;
898
+
899
+ float weight[BLOCKWIDTH];
900
+ for (int b = 0; b < batch; ++b){
901
+ for (int head = 0; head < heads; ++head){
902
+ int batch_shift = b * heads + head;
903
+ for (k = 0; k < BLOCKWIDTH && h + k < vec_height; ++k){
904
+ int k_w = k;
905
+ int w_index = batch_shift * height * width + i + (k_w * width);
906
+ if (w_index >= weight_total || w >= width) {
907
+ weight[k] = 0;
908
+ } else {
909
+ scalar_t scale = scales[batch_shift * width + w];
910
+ scalar_t zero = zeros[batch_shift * width + w];
911
+ w_tmp = as_unsigned(mat[w_index]);
912
+ weight[k] = scale * (w_tmp - zero);
913
+ }
914
+ }
915
+
916
+ scalar_t res;
917
+ for (int vr = 0; vr < vec_row; ++vr){
918
+ res = 0;
919
+ int vec_index = (batch_shift * vec_row + vr) * vec_height + blockIdx.x * BLOCKWIDTH + tid;
920
+ if (vec_index < input_total) {
921
+ blockvec[tid] = vec[vec_index];
922
+ } else {
923
+ blockvec[tid] = 0;
924
+ }
925
+
926
+ __syncthreads();
927
+ for (k = 0; k < BLOCKWIDTH && h + k < vec_height; ++k){
928
+ // res is the dot product of BLOCKWIDTH elements (part of width)
929
+ res += weight[k] * blockvec[k];
930
+ }
931
+ // add res to the final result, final matrix shape: (batch, vec_row, width)
932
+ int out_index = (batch_shift * vec_row + vr) * width + w;
933
+ if (out_index < out_total) {
934
+ atomicAdd(&mul[out_index], res);
935
+ }
936
+ __syncthreads();
937
+ }
938
+ }
939
+ }
940
+ }
941
+
942
+
943
+
944
+ void vecquant8matmul_batched_faster_cuda(
945
+ torch::Tensor vec,
946
+ torch::Tensor mat,
947
+ torch::Tensor mul,
948
+ torch::Tensor scales,
949
+ torch::Tensor zeros
950
+ ) {
951
+ int batch = vec.size(0);
952
+ int heads = vec.size(1);
953
+ int vec_row = vec.size(2);
954
+ int vec_height = vec.size(3);
955
+ int height = mat.size(2);
956
+ int width = mat.size(3);
957
+ int zero_width = zeros.size(2);
958
+
959
+ dim3 blocks(
960
+ (height + BLOCKWIDTH - 1) / BLOCKWIDTH,
961
+ (width + BLOCKWIDTH - 1) / BLOCKWIDTH
962
+ );
963
+ dim3 threads(BLOCKWIDTH);
964
+
965
+ VecQuant8BatchMatMulKernel_faster<<<blocks, threads>>>(
966
+ (half*) vec.data_ptr(),
967
+ (uint8_t*) mat.data_ptr(),
968
+ (half*) mul.data_ptr(),
969
+ (half*) scales.data_ptr(),
970
+ (half*) zeros.data_ptr(),
971
+ batch, heads, vec_row, vec_height, height, width, zero_width
972
+ );
973
+ }
974
+
975
+
976
+
977
+ __global__ void VecQuant8BatchMatMulKernel_faster(
978
+ const half* __restrict__ vec,
979
+ const uint8_t* __restrict__ mat,
980
+ half* __restrict__ mul,
981
+ const half* __restrict__ scales,
982
+ const half* __restrict__ zeros,
983
+ int batch,
984
+ int heads,
985
+ int vec_row,
986
+ int vec_height,
987
+ int height,
988
+ int width,
989
+ int zero_width
990
+ ) {
991
+ //int weight_total = batch * heads * height * width;
992
+ int input_total = batch * heads * vec_row * vec_height;
993
+ int out_total = batch * heads * vec_row * width;
994
+ int tid = threadIdx.x;
995
+ int h = BLOCKWIDTH * blockIdx.x;
996
+ int w = BLOCKWIDTH * blockIdx.y + tid;
997
+ if (w >= width && tid >= height) {
998
+ return;
999
+ }
1000
+
1001
+ __shared__ float blockvec[BLOCKWIDTH];
1002
+ int i = width * h + w;
1003
+ int k;
1004
+ float w_tmp;
1005
+
1006
+ float weight[BLOCKWIDTH];
1007
+ for (int b = 0; b < batch; ++b){
1008
+ for (int head = 0; head < heads; ++head){
1009
+ int batch_shift = b * heads + head;
1010
+ for (k = 0; k < BLOCKWIDTH && h + k < vec_height; ++k){
1011
+ int k_w = k;
1012
+ int w_index = batch_shift * height * width + i + (k_w * width);
1013
+ float scale = __half2float(scales[batch_shift * width + w]);
1014
+ float zero = __half2float(zeros[batch_shift * width + w]);
1015
+ w_tmp = as_unsigned(mat[w_index]);
1016
+ weight[k] = scale *(w_tmp-zero);
1017
+ }
1018
+
1019
+ float res;
1020
+ for (int vr = 0; vr < vec_row; ++vr){
1021
+ res = 0;
1022
+ int vec_index = (batch_shift * vec_row + vr) * vec_height + blockIdx.x * BLOCKWIDTH + tid;
1023
+ if (vec_index < input_total) {
1024
+ blockvec[tid] = __half2float(vec[vec_index]);
1025
+ } else {
1026
+ blockvec[tid] = 0;
1027
+ }
1028
+ __syncthreads();
1029
+ for (k = 0; k < BLOCKWIDTH && h + k < vec_height; ++k){
1030
+ float temp_res = weight[k]*blockvec[k];
1031
+ res += temp_res;
1032
+ }
1033
+ int out_index = (batch_shift * vec_row + vr) * width + w;
1034
+ if (out_index < out_total) {
1035
+ atomicAdd(&mul[out_index], __float2half(res));
1036
+ }
1037
+ __syncthreads();
1038
+ }
1039
+ }
1040
+ }
1041
+ }
1042
+
1043
+
1044
+
1045
+
1046
+ void vecquant8matmul_batched_column_compression_faster_cuda(
1047
+ torch::Tensor vec,
1048
+ torch::Tensor mat,
1049
+ torch::Tensor mul,
1050
+ torch::Tensor scales,
1051
+ torch::Tensor zeros
1052
+ ) {
1053
+ int batch = vec.size(0);
1054
+ int heads = vec.size(1);
1055
+ int vec_row = vec.size(2);
1056
+ int height = vec.size(3);
1057
+ int width = mat.size(3);
1058
+
1059
+ dim3 blocks(
1060
+ (height + BLOCKWIDTH - 1) / BLOCKWIDTH,
1061
+ (width + BLOCKWIDTH - 1) / BLOCKWIDTH
1062
+ );
1063
+ dim3 threads(BLOCKWIDTH);
1064
+
1065
+ VecQuant8BatchMatMulColumnCompressionKernel_faster<<<blocks, threads>>>(
1066
+ (half*) vec.data_ptr(),
1067
+ (uint8_t*) mat.data_ptr(),
1068
+ (half*) mul.data_ptr(),
1069
+ (half*) scales.data_ptr(),
1070
+ (half*) zeros.data_ptr(),
1071
+ batch, heads, vec_row, height, width
1072
+ );
1073
+
1074
+ }
1075
+
1076
+ __global__ void VecQuant8BatchMatMulColumnCompressionKernel_faster(
1077
+ const half* __restrict__ vec,
1078
+ const uint8_t* __restrict__ mat,
1079
+ half* __restrict__ mul,
1080
+ const half* __restrict__ scales,
1081
+ const half* __restrict__ zeros,
1082
+ int batch,
1083
+ int heads,
1084
+ int vec_row,
1085
+ int height,
1086
+ int width
1087
+ ) {
1088
+ //int weight_total = batch * heads * height * width;
1089
+ int input_total = batch * heads * vec_row * height;
1090
+ int out_total = batch * heads * vec_row * width;
1091
+ int tid = threadIdx.x;
1092
+ int h = BLOCKWIDTH * blockIdx.x;
1093
+ int w = BLOCKWIDTH * blockIdx.y + tid;
1094
+ if (w >= width && tid >= height) {
1095
+ return;
1096
+ }
1097
+
1098
+ __shared__ float blockvec[BLOCKWIDTH];
1099
+ int k;
1100
+ float w_tmp;
1101
+ float weight[BLOCKWIDTH];
1102
+
1103
+ for (int b = 0; b < batch; ++b){
1104
+ for (int head = 0; head < heads; ++head){
1105
+ int batch_shift = b * heads + head;
1106
+ for (k = 0; k < BLOCKWIDTH; ++k){
1107
+ int w_index = (batch_shift * height + h + k) * width + w;
1108
+ float scale = __half2float(scales[batch_shift * height + h + k]);
1109
+ float zero = __half2float(zeros[batch_shift * height + h + k]);
1110
+ w_tmp = mat[w_index];
1111
+ weight[k] = scale * (w_tmp-zero);
1112
+ }
1113
+
1114
+ float res;
1115
+ for (int vr = 0; vr < vec_row; ++vr){
1116
+ res = 0;
1117
+ int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
1118
+ if (vec_index < input_total) {
1119
+ blockvec[tid] = __half2float(vec[vec_index]);
1120
+ } else {
1121
+ blockvec[tid] = 0;
1122
+ }
1123
+ __syncthreads();
1124
+ for (k = 0; k < BLOCKWIDTH; ++k){
1125
+ res += weight[k]*blockvec[k];
1126
+ }
1127
+ int out_index = (batch_shift * vec_row + vr) * width + w;
1128
+ if (out_index < out_total) {
1129
+ atomicAdd(&mul[out_index], __float2half(res));
1130
+ }
1131
+ __syncthreads();
1132
+ }
1133
+ }
1134
+ }
1135
+ }
1136
+
1137
+
1138
+
1139
+ void vecquant8matmul_batched_column_compression_old_cuda(
1140
+ torch::Tensor vec,
1141
+ torch::Tensor mat,
1142
+ torch::Tensor mul,
1143
+ torch::Tensor scales,
1144
+ torch::Tensor zeros
1145
+ ) {
1146
+ int batch = vec.size(0);
1147
+ int heads = vec.size(1);
1148
+ int vec_row = vec.size(2);
1149
+ int height = vec.size(3);
1150
+ int width = mat.size(3);
1151
+
1152
+ dim3 blocks(
1153
+ (height + BLOCKWIDTH - 1) / BLOCKWIDTH,
1154
+ (width + BLOCKWIDTH - 1) / BLOCKWIDTH
1155
+ );
1156
+ dim3 threads(BLOCKWIDTH);
1157
+
1158
+ AT_DISPATCH_FLOATING_TYPES(
1159
+ vec.type(), "vecquant8matmul_batched_column_compression_old_cuda", ([&] {
1160
+ VecQuant8BatchMatMulColumnCompressionKernel_old<<<blocks, threads>>>(
1161
+ vec.data<scalar_t>(), mat.data<uint8_t>(), mul.data<scalar_t>(),
1162
+ scales.data<scalar_t>(), zeros.data<scalar_t>(),
1163
+ batch, heads, vec_row, height, width
1164
+ );
1165
+ })
1166
+ );
1167
+
1168
+ }
1169
+
1170
+ template <typename scalar_t>
1171
+ __global__ void VecQuant8BatchMatMulColumnCompressionKernel_old(
1172
+ const scalar_t* __restrict__ vec,
1173
+ const uint8_t* __restrict__ mat,
1174
+ scalar_t* __restrict__ mul,
1175
+ const scalar_t* __restrict__ scales,
1176
+ const scalar_t* __restrict__ zeros,
1177
+ int batch,
1178
+ int heads,
1179
+ int vec_row,
1180
+ int height,
1181
+ int width
1182
+ ) {
1183
+ int weight_total = batch * heads * height * width;
1184
+ int input_total = batch * heads * vec_row * height;
1185
+ int out_total = batch * heads * vec_row * width;
1186
+ int tid = threadIdx.x;
1187
+ // h is index of height with step being BLOCKWIDTH
1188
+ int h = BLOCKWIDTH * blockIdx.x;
1189
+ // w is index of width with step being 1
1190
+ int w = BLOCKWIDTH * blockIdx.y + tid;
1191
+ if (w >= width && tid >= height) {
1192
+ return;
1193
+ }
1194
+
1195
+ __shared__ scalar_t blockvec[BLOCKWIDTH];
1196
+ int k;
1197
+ scalar_t w_tmp;
1198
+
1199
+ float weight[BLOCKWIDTH];
1200
+
1201
+ for (int b = 0; b < batch; ++b){
1202
+ for (int head = 0; head < heads; ++head){
1203
+ int batch_shift = b * heads + head;
1204
+ for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){
1205
+ int w_index = (batch_shift * height + h + k) * width + w;
1206
+ if (w_index >= weight_total || w >= width) {
1207
+ weight[k] = 0;
1208
+ } else {
1209
+ scalar_t scale = scales[batch_shift * height + h + k];
1210
+ scalar_t zero = zeros[batch_shift * height + h + k];
1211
+ w_tmp = mat[w_index];
1212
+ weight[k] = scale * (w_tmp - zero);
1213
+ }
1214
+ }
1215
+
1216
+ scalar_t res;
1217
+ for (int vr = 0; vr < vec_row; ++vr){
1218
+ res = 0;
1219
+ int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
1220
+ if (vec_index < input_total) {
1221
+ blockvec[tid] = vec[vec_index];
1222
+ } else {
1223
+ blockvec[tid] = 0;
1224
+ }
1225
+
1226
+ __syncthreads();
1227
+ for (k = 0; k < BLOCKWIDTH && h + k < height; ++k){
1228
+ // res is the dot product of BLOCKWIDTH elements (part of width)
1229
+ res += weight[k] * blockvec[k];
1230
+ }
1231
+ // add res to the final result, final matrix shape: (batch, vec_row, width)
1232
+ int out_index = (batch_shift * vec_row + vr) * width + w;
1233
+ if (out_index < out_total) {
1234
+ atomicAdd(&mul[out_index], res);
1235
+ }
1236
+ __syncthreads();
1237
+ }
1238
+ }
1239
+ }
1240
+ }
1241
+
1242
+
1243
+ void vecquant4matmul_batched_old_cuda(
1244
+ torch::Tensor vec,
1245
+ torch::Tensor mat,
1246
+ torch::Tensor mul,
1247
+ torch::Tensor scales,
1248
+ torch::Tensor zeros
1249
+ ) {
1250
+ int batch = vec.size(0);
1251
+ int heads = vec.size(1);
1252
+ int vec_row = vec.size(2);
1253
+ int vec_height = vec.size(3);
1254
+ int height = mat.size(2);
1255
+ int width = mat.size(3);
1256
+ int zero_width = zeros.size(2);
1257
+
1258
+ dim3 blocks(
1259
+ (height + BLOCKHEIGHT_OLD4 - 1) / BLOCKHEIGHT_OLD4,
1260
+ (width + BLOCKWIDTH - 1) / BLOCKWIDTH
1261
+ );
1262
+ dim3 threads(BLOCKWIDTH);
1263
+
1264
+ AT_DISPATCH_FLOATING_TYPES(
1265
+ vec.type(), "vecquant4matmul_batched_old_cuda", ([&] {
1266
+ VecQuant4BatchMatMulKernel_old<<<blocks, threads>>>(
1267
+ vec.data<scalar_t>(), mat.data<uint8_t>(), mul.data<scalar_t>(),
1268
+ scales.data<scalar_t>(), zeros.data<scalar_t>(),
1269
+ batch, heads, vec_row, vec_height, height, width, zero_width
1270
+ );
1271
+ })
1272
+ );
1273
+
1274
+ }
1275
+
1276
+ template <typename scalar_t>
1277
+ __global__ void VecQuant4BatchMatMulKernel_old(
1278
+ const scalar_t* __restrict__ vec,
1279
+ const uint8_t* __restrict__ mat,
1280
+ scalar_t* __restrict__ mul,
1281
+ const scalar_t* __restrict__ scales,
1282
+ const scalar_t* __restrict__ zeros,
1283
+ int batch,
1284
+ int heads,
1285
+ int vec_row,
1286
+ int vec_height,
1287
+ int height,
1288
+ int width,
1289
+ int zero_width
1290
+ ) {
1291
+ int weight_total = batch * heads * height * width;
1292
+ int input_total = batch * heads * vec_row * vec_height;
1293
+ int out_total = batch * heads * vec_row * width;
1294
+ int tid = threadIdx.x;
1295
+ // h is index of height with step being BLOCKHEIGHT_OLD4
1296
+ int h = BLOCKHEIGHT_OLD4 * blockIdx.x;
1297
+ // w is index of width with step being 1
1298
+ int w = BLOCKWIDTH * blockIdx.y + tid;
1299
+ if (w >= width && tid >= vec_height) {
1300
+ return;
1301
+ }
1302
+
1303
+ __shared__ scalar_t blockvec[BLOCKWIDTH];
1304
+ // i is index of mat of block first row
1305
+ int i = width * h + w;
1306
+ int k;
1307
+ scalar_t w_tmp;
1308
+
1309
+ float weight[BLOCKWIDTH];
1310
+ for (int b = 0; b < batch; ++b){
1311
+ for (int head = 0; head < heads; ++head){
1312
+ int batch_shift = b * heads + head;
1313
+ for (k = 0; k < BLOCKWIDTH && h*2 + k < vec_height; ++k){
1314
+ int k_w = (k / 2);
1315
+ int k_bit = (k % 2) * 4;
1316
+ int w_index = batch_shift * height * width + i + (k_w * width);
1317
+ if (w_index >= weight_total || w >= width) {
1318
+ weight[k] = 0;
1319
+ } else {
1320
+ scalar_t scale = scales[batch_shift * width + w];
1321
+ scalar_t zero = zeros[batch_shift * width + w];
1322
+ w_tmp = ((as_unsigned(mat[w_index]) >> k_bit) & 0xF);
1323
+ weight[k] = scale * (w_tmp - zero);
1324
+ }
1325
+ }
1326
+
1327
+ scalar_t res;
1328
+ for (int vr = 0; vr < vec_row; ++vr){
1329
+ res = 0;
1330
+ int vec_index = (batch_shift * vec_row + vr) * vec_height + blockIdx.x * BLOCKWIDTH + tid;
1331
+ if (vec_index < input_total) {
1332
+ blockvec[tid] = vec[vec_index];
1333
+ } else {
1334
+ blockvec[tid] = 0;
1335
+ }
1336
+
1337
+ __syncthreads();
1338
+ for (k = 0; k < BLOCKWIDTH && h*2 + k < vec_height; ++k){
1339
+ // res is the dot product of BLOCKWIDTH elements (part of width)
1340
+ res += weight[k] * blockvec[k];
1341
+ }
1342
+ // add res to the final result, final matrix shape: (batch, vec_row, width)
1343
+ int out_index = (batch_shift * vec_row + vr) * width + w;
1344
+ if (out_index < out_total) {
1345
+ atomicAdd(&mul[out_index], res);
1346
+ }
1347
+ __syncthreads();
1348
+ }
1349
+ }
1350
+ }
1351
+ }
1352
+
1353
+
1354
+
1355
+
1356
+
1357
+ void vecquant4matmul_batched_column_compression_old_cuda(
1358
+ torch::Tensor vec,
1359
+ torch::Tensor mat,
1360
+ torch::Tensor mul,
1361
+ torch::Tensor scales,
1362
+ torch::Tensor zeros
1363
+ ) {
1364
+ int batch = vec.size(0);
1365
+ int heads = vec.size(1);
1366
+ int vec_row = vec.size(2);
1367
+ int height = vec.size(3);
1368
+ int width = mat.size(3);
1369
+
1370
+ dim3 blocks(
1371
+ (height + BLOCKHEIGHT_OLD4 - 1) / BLOCKHEIGHT_OLD4,
1372
+ (width + BLOCKWIDTH - 1) / BLOCKWIDTH
1373
+ );
1374
+ dim3 threads(BLOCKWIDTH);
1375
+
1376
+ AT_DISPATCH_FLOATING_TYPES(
1377
+ vec.type(), "vecquant4matmul_batched_column_compression_old_cuda", ([&] {
1378
+ VecQuant4BatchMatMulColumnCompressionKernel_old<<<blocks, threads>>>(
1379
+ vec.data<scalar_t>(), mat.data<uint8_t>(), mul.data<scalar_t>(),
1380
+ scales.data<scalar_t>(), zeros.data<scalar_t>(),
1381
+ batch, heads, vec_row, height, width
1382
+ );
1383
+ })
1384
+ );
1385
+
1386
+ }
1387
+
1388
+ template <typename scalar_t>
1389
+ __global__ void VecQuant4BatchMatMulColumnCompressionKernel_old(
1390
+ const scalar_t* __restrict__ vec,
1391
+ const uint8_t* __restrict__ mat,
1392
+ scalar_t* __restrict__ mul,
1393
+ const scalar_t* __restrict__ scales,
1394
+ const scalar_t* __restrict__ zeros,
1395
+ int batch,
1396
+ int heads,
1397
+ int vec_row,
1398
+ int height,
1399
+ int width
1400
+ ) {
1401
+ int weight_total = batch * heads * height * width;
1402
+ int input_total = batch * heads * vec_row * height;
1403
+ int out_total = batch * heads * vec_row * width;
1404
+ int tid = threadIdx.x;
1405
+ // h is index of height with step being BLOCKWIDTH
1406
+ int h = BLOCKHEIGHT_OLD4 * blockIdx.x;
1407
+ // w is index of width with step being 1
1408
+ int w = BLOCKWIDTH * blockIdx.y + tid;
1409
+ if (w >= width && tid >= height) {
1410
+ return;
1411
+ }
1412
+
1413
+ __shared__ scalar_t blockvec[BLOCKWIDTH];
1414
+ int k;
1415
+ scalar_t w_tmp;
1416
+
1417
+ float weight[BLOCKWIDTH];
1418
+
1419
+ for (int b = 0; b < batch; ++b){
1420
+ for (int head = 0; head < heads; ++head){
1421
+ int batch_shift = b * heads + head;
1422
+ for (k = 0; k < BLOCKWIDTH && h*2 + k < height; ++k){
1423
+ int k_w = (k / 2);
1424
+ int k_bit = (k % 2) * 4;
1425
+ int w_index = (batch_shift * height + h + k) * width + k_w;
1426
+ if (w_index >= weight_total || w >= width) {
1427
+ weight[k] = 0;
1428
+ } else {
1429
+ scalar_t scale = scales[batch_shift * height + h + k];
1430
+ scalar_t zero = zeros[batch_shift * height + h + k];
1431
+ w_tmp = ((as_unsigned(mat[w_index]) >> k_bit) & 0xF);
1432
+ weight[k] = scale * (w_tmp - zero);
1433
+ }
1434
+ }
1435
+
1436
+ scalar_t res;
1437
+ for (int vr = 0; vr < vec_row; ++vr){
1438
+ res = 0;
1439
+ int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
1440
+ if (vec_index < input_total) {
1441
+ blockvec[tid] = vec[vec_index];
1442
+ } else {
1443
+ blockvec[tid] = 0;
1444
+ }
1445
+
1446
+ __syncthreads();
1447
+ for (k = 0; k < BLOCKWIDTH && h*2 + k < height; ++k){
1448
+ // res is the dot product of BLOCKWIDTH elements (part of width)
1449
+ res += weight[k] * blockvec[k];
1450
+ }
1451
+ // add res to the final result, final matrix shape: (batch, vec_row, width)
1452
+ int out_index = (batch_shift * vec_row + vr) * width + w;
1453
+ if (out_index < out_total) {
1454
+ atomicAdd(&mul[out_index], res);
1455
+ }
1456
+ __syncthreads();
1457
+ }
1458
+ }
1459
+ }
1460
+ }
1461
+
1462
+
1463
+
1464
+
1465
+
1466
+ void vecquant8matmul_batched_faster_old_cuda(
1467
+ torch::Tensor vec,
1468
+ torch::Tensor mat,
1469
+ torch::Tensor mul,
1470
+ torch::Tensor scales,
1471
+ torch::Tensor zeros
1472
+ ) {
1473
+ int batch = vec.size(0);
1474
+ int heads = vec.size(1);
1475
+ int vec_row = vec.size(2);
1476
+ int vec_height = vec.size(3);
1477
+ int height = mat.size(2);
1478
+ int width = mat.size(3);
1479
+
1480
+ dim3 blocks(
1481
+ (height + BLOCKWIDTH - 1) / BLOCKWIDTH,
1482
+ (width + BLOCKWIDTH - 1) / BLOCKWIDTH
1483
+ );
1484
+ dim3 threads(BLOCKWIDTH);
1485
+
1486
+ VecQuant8BatchMatMulKernel_faster_old<<<blocks, threads>>>(
1487
+ (half*) vec.data_ptr(),
1488
+ (uint8_t*) mat.data_ptr(),
1489
+ (half*) mul.data_ptr(),
1490
+ (half*) scales.data_ptr(),
1491
+ (half*) zeros.data_ptr(),
1492
+ batch, heads, vec_row, vec_height, height, width
1493
+ );
1494
+ }
1495
+
1496
+
1497
+ __global__ void VecQuant8BatchMatMulKernel_faster_old(
1498
+ const half* __restrict__ vec,
1499
+ const uint8_t* __restrict__ mat,
1500
+ half* __restrict__ mul,
1501
+ const half* __restrict__ scales,
1502
+ const half* __restrict__ zeros,
1503
+ int batch,
1504
+ int heads,
1505
+ int vec_row,
1506
+ int vec_height,
1507
+ int height,
1508
+ int width
1509
+ ) {
1510
+ int weight_total = batch * heads * height * width;
1511
+ int input_total = batch * heads * vec_row * vec_height;
1512
+ int out_total = batch * heads * vec_row * width;
1513
+ int tid = threadIdx.x;
1514
+ const int BLOCKWIDTH_half = BLOCKWIDTH/2;
1515
+
1516
+ int h = BLOCKWIDTH * blockIdx.x; //head_dim, dim=-1
1517
+ int w = BLOCKWIDTH * blockIdx.y + tid; //seq-len, +0-256 ,dim=-2
1518
+ /*
1519
+ if (w >= width && tid >= vec_height) {
1520
+ return;
1521
+ }
1522
+ */
1523
+ __shared__ half blockvec[BLOCKWIDTH]; //256
1524
+ int i = width * h + w;
1525
+ int k;
1526
+
1527
+ half w_tmp1 = __float2half(0);
1528
+ half w_tmp2 = __float2half(0);
1529
+
1530
+ half2 weight[BLOCKWIDTH_half];
1531
+ for (int b = 0; b < batch; ++b){
1532
+ for (int head = 0; head < heads; ++head){
1533
+ int batch_shift = b * heads + head;
1534
+ //int zero_index = batch_shift;
1535
+ for (k = 0; k < BLOCKWIDTH_half; ++k){
1536
+ int w_index1 = batch_shift * height * width + i + (2 * k * width); // [batch,head,h+k, w]
1537
+ int w_index2 = batch_shift * height * width + i + ((2 * k + 1) * width);
1538
+ int zero_index = batch_shift * width + w; // [batch,head, w]
1539
+ if (w_index1 >= weight_total || w >= width || (2 * k + h) >= height) {
1540
+ weight[k] = __float2half2_rn(0);
1541
+ } else {
1542
+ float zero_f=__half2float(zeros[zero_index]);
1543
+ float scale_f= __half2float(scales[zero_index]);
1544
+ if (w_index2 >= weight_total){
1545
+ w_tmp1 = __float2half((as_unsigned(mat[w_index1]) -zero_f)*scale_f);
1546
+ w_tmp2 = __float2half(0);
1547
+ weight[k] = __halves2half2(w_tmp1,w_tmp2);
1548
+ //printf("zero_index is %d w is %d height is %d width is %d w_index1 is %d w_tmp1 is %f w_tmp2 is %f zero is %f scale is %f low is %f high is %f \n ",zero_index,w,height, width,w_index1,__half2float(w_tmp1),__half2float(w_tmp2),zero_f,scale_f,__low2float(weight[k]),__high2float(weight[k]));
1549
+ }else{
1550
+ w_tmp1 = __int2half_rn(as_unsigned(mat[w_index1]));
1551
+ w_tmp2 = __int2half_rn(as_unsigned(mat[w_index2]));
1552
+
1553
+ //weight[k] = __hmul2(__hsub2(__halves2half2(w_tmp1,w_tmp2), __halves2half2(zero,zero)),__halves2half2(scale,scale));
1554
+ weight[k] = __hfma2(__halves2half2(w_tmp1,w_tmp2), __float2half2_rn(scale_f), __float2half2_rn(-(scale_f * zero_f)));
1555
+ //printf("zero_index1 is %d zero_index2 is %d k is %d head is %d w is %d h is %d height is %d width is %d w_index1 is %d w_index2 is %d zero is %f scale is %f low is %f high is %f \n ",zero_index1,zero_index2,k,head,w,h,height, width,w_index1,w_index2,__half2float(zero1),__half2float(scale1),__low2float(weight[k]),__high2float(weight[k]));
1556
+ }
1557
+ }
1558
+ }
1559
+
1560
+
1561
+ for (int vr = 0; vr < vec_row; ++vr){
1562
+ float res=0;
1563
+ int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
1564
+ int out_index = (batch_shift * vec_row + vr) * width + w;
1565
+ if (vec_index < input_total) {
1566
+ //blockvec[tid] = __half2float(vec[vec_index]);// [batch, head, vr, tid(seq_len dim+)]
1567
+ blockvec[tid] = vec[vec_index];
1568
+ //printf("width is %d height is %d h is %d w is %d vec_index is %d out_index is %d vec_row is %d vec_height is %d,vr is %d tid is %d blockvec is %f\n",width,height, h,w,vec_index,out_index,vec_row,vec_height,vr,tid,blockvec[tid]);
1569
+ } else {
1570
+ blockvec[tid] = __float2half(0);
1571
+ }
1572
+ __syncthreads();
1573
+ if (out_index < out_total) {
1574
+ for (k = 0; k < BLOCKWIDTH_half; ++k){
1575
+ half2 res2 = __hmul2(weight[k],__halves2half2(blockvec[2*k],blockvec[2*k+1]));
1576
+ res += __low2float(res2) + __high2float(res2);
1577
+ }
1578
+ atomicAdd(&mul[out_index], __float2half(res));
1579
+ }
1580
+ __syncthreads();
1581
+ }
1582
+ }
1583
+ }
1584
+ }
1585
+
1586
+
1587
+ void vecquant8matmul_batched_column_compression_faster_old_cuda(
1588
+ torch::Tensor vec, // [batch,heads, seq_q, seq_v]
1589
+ torch::Tensor mat, // [batch,heads, seq_v, head_dim]
1590
+ torch::Tensor mul, // [batch,heads, seq_q,head_dim]
1591
+ torch::Tensor scales, // [batch,heads, head_dim]
1592
+ torch::Tensor zeros
1593
+ ) {
1594
+ int batch = vec.size(0);
1595
+ int heads = vec.size(1);
1596
+ int vec_row = vec.size(2); //ql
1597
+ int height = mat.size(2); //vl
1598
+ int width = mat.size(3); //head_dim
1599
+
1600
+ dim3 blocks(
1601
+ (height + BLOCKWIDTH - 1) / BLOCKWIDTH,
1602
+ (width + BLOCKWIDTH - 1) / BLOCKWIDTH
1603
+ );
1604
+ dim3 threads(BLOCKWIDTH);
1605
+
1606
+ VecQuant8BatchMatMulColumnCompressionKernel_faster_old<<<blocks, threads>>>(
1607
+ (half*) vec.data_ptr(),
1608
+ (uint8_t*) mat.data_ptr(),
1609
+ (half*) mul.data_ptr(),
1610
+ (half*) scales.data_ptr(),
1611
+ (half*) zeros.data_ptr(),
1612
+ batch, heads, vec_row, height, width
1613
+ );
1614
+
1615
+ }
1616
+
1617
+
1618
+ __global__ void VecQuant8BatchMatMulColumnCompressionKernel_faster_old(
1619
+ const half* __restrict__ vec, // [batch,heads, seq_q, seq_v]
1620
+ const uint8_t* __restrict__ mat, // [batch,heads, seq_v, head_dim]
1621
+ half* __restrict__ mul, // [batch,heads, seq_q,head_dim]
1622
+ const half* __restrict__ scales, // [batch,heads, seq_v]
1623
+ const half* __restrict__ zeros,
1624
+ int batch,
1625
+ int heads,
1626
+ int vec_row, //seq_q
1627
+ int height, //seq_v
1628
+ int width //head_dim
1629
+ ) {
1630
+ int weight_total = batch * heads * height * width;
1631
+ int input_total = batch * heads * vec_row * height;
1632
+ int out_total = batch * heads * vec_row * width;
1633
+ int tid = threadIdx.x;
1634
+ int h = BLOCKWIDTH * blockIdx.x; // vl
1635
+ int w = BLOCKWIDTH * blockIdx.y + tid; //head_dim + block
1636
+ if (w >= width && tid >= height) {
1637
+ return;
1638
+ }
1639
+ __shared__ half blockvec[BLOCKWIDTH];
1640
+ int k;
1641
+ half w_tmp1 = __float2half(0);
1642
+ half w_tmp2 = __float2half(0);
1643
+ int i = width * h + w;
1644
+ const int BLOCKWIDTH_half = BLOCKWIDTH/2;
1645
+ half2 weight[BLOCKWIDTH_half];
1646
+
1647
+ for (int b = 0; b < batch; ++b){
1648
+ for (int head = 0; head < heads; ++head){
1649
+ int batch_shift = b * heads + head;
1650
+ //int zero_index = batch_shift;
1651
+ for (k = 0; k < BLOCKWIDTH_half; ++k){
1652
+ int w_index1 = batch_shift * height * width + i + (2 * k) * width; // [batch,head, h+k, w]
1653
+ int w_index2 = batch_shift * height * width + i + ((2 * k + 1) * width);
1654
+ int zero_index1 = batch_shift * height + h + 2*k; // [batch,head, w]
1655
+ int zero_index2 = batch_shift * height + h + 2*k+1; // [batch,head, w]
1656
+
1657
+ if (w_index1 >= weight_total || (2 * k + h)>=height) {
1658
+ weight[k]=__float2half2_rn(0);
1659
+ } else{
1660
+ //int zero_index = batch_shift + h; // [batch,head, w]
1661
+ //float scale_f1 = __half2float(scales[zero_index1]);
1662
+ //float zero_f1 = __half2float(zeros[zero_index1]);
1663
+ if (w_index2>=weight_total){
1664
+ w_tmp1 = __float2half((as_unsigned(mat[w_index1]) - __half2float(zeros[zero_index1]))* __half2float(scales[zero_index1]));
1665
+ w_tmp2 = __float2half(0);
1666
+ weight[k] = __halves2half2(w_tmp1,w_tmp2);
1667
+ //printf("zero_index is %d k is %d w is %d head is %d height is %d width is %d w_index1 is %d w_tmp1 is %f w_tmp2 is %f zero is %f scale is %f low is %f high is %f \n ",zero_index,k,w,head,height, width,w_index1,__half2float(w_tmp1),__half2float(w_tmp2),zero_f,scale_f,__low2float(weight[k]),__high2float(weight[k]));
1668
+ }else{
1669
+ w_tmp1 = __int2half_rn(as_unsigned(mat[w_index1]));
1670
+ w_tmp2 = __int2half_rn(as_unsigned(mat[w_index2]));
1671
+ half zero1=zeros[zero_index1];
1672
+ half zero2=zeros[zero_index2];
1673
+ half scale1=scales[zero_index1];
1674
+ half scale2=scales[zero_index2];
1675
+ weight[k] = __hmul2(__hsub2(__halves2half2(w_tmp1,w_tmp2), __halves2half2(zero1,zero2)),__halves2half2(scale1,scale2));
1676
+ //weight[k] = __hfma2(__halves2half2(w_tmp1,w_tmp2), __float2half2_rn(scale_f), __float2half2_rn(-(scale_f * zero_f)));
1677
+ //printf("zero_index1 is %d zero_index2 is %d k is %d head is %d w is %d h is %d height is %d width is %d w_index1 is %d w_index2 is %d zero is %f scale is %f low is %f high is %f \n ",zero_index1,zero_index2,k,head,w,h,height, width,w_index1,w_index2,__half2float(zero1),__half2float(scale1),__low2float(weight[k]),__high2float(weight[k]));
1678
+ }
1679
+ }
1680
+ }
1681
+
1682
+
1683
+ for (int vr = 0; vr < vec_row; ++vr){
1684
+ float res=0;
1685
+ int vec_index = (batch_shift * vec_row + vr) * height + blockIdx.x * BLOCKWIDTH + tid;
1686
+ int out_index = (batch_shift * vec_row + vr) * width + w;
1687
+
1688
+ if (vec_index < input_total) {
1689
+ //blockvec[tid] = __half2float(vec[vec_index]);
1690
+ blockvec[tid] = vec[vec_index];
1691
+ //printf("vec_index is %d out_index is %d vec_row is %d ,vr is %d tid is %d blockvec is %f\n",vec_index,out_index,vec_row,vr,tid,blockvec[tid]);
1692
+ } else {
1693
+ blockvec[tid] = __float2half(0);
1694
+ //blockvec[tid] = 0;
1695
+ }
1696
+ __syncthreads();
1697
+ if (out_index < out_total) {
1698
+ for (k = 0; k < BLOCKWIDTH_half; ++k){
1699
+ half2 res2 = __hmul2(weight[k],__halves2half2(blockvec[2*k],blockvec[2*k+1]));
1700
+ res += __low2float(res2) + __high2float(res2);
1701
+ }
1702
+ atomicAdd(&mul[out_index], __float2half(res));
1703
+ }
1704
+ __syncthreads();
1705
+ }
1706
+ }
1707
+ }
1708
+ }
Qwen/Qwen-1_8B-Chat/config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "QWenLMHeadModel"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_qwen.QWenConfig",
7
+ "AutoModelForCausalLM": "modeling_qwen.QWenLMHeadModel"
8
+ },
9
+ "attn_dropout_prob": 0.0,
10
+ "bf16": false,
11
+ "emb_dropout_prob": 0.0,
12
+ "fp16": false,
13
+ "fp32": false,
14
+ "hidden_size": 2048,
15
+ "intermediate_size": 11008,
16
+ "initializer_range": 0.02,
17
+ "kv_channels": 128,
18
+ "layer_norm_epsilon": 1e-06,
19
+ "max_position_embeddings": 8192,
20
+ "model_type": "qwen",
21
+ "no_bias": true,
22
+ "num_attention_heads": 16,
23
+ "num_hidden_layers": 24,
24
+ "onnx_safe": null,
25
+ "rotary_emb_base": 10000,
26
+ "rotary_pct": 1.0,
27
+ "scale_attn_weights": true,
28
+ "seq_length": 8192,
29
+ "tie_word_embeddings": false,
30
+ "tokenizer_class": "QWenTokenizer",
31
+ "transformers_version": "4.32.0",
32
+ "use_cache": true,
33
+ "use_dynamic_ntk": true,
34
+ "use_flash_attn": "auto",
35
+ "use_logn_attn": true,
36
+ "vocab_size": 151936
37
+ }
Qwen/Qwen-1_8B-Chat/configuration_qwen.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ from transformers import PretrainedConfig
7
+
8
+
9
+ class QWenConfig(PretrainedConfig):
10
+ model_type = "qwen"
11
+ keys_to_ignore_at_inference = ["past_key_values"]
12
+
13
+ def __init__(
14
+ self,
15
+ vocab_size=151936,
16
+ hidden_size=4096,
17
+ num_hidden_layers=32,
18
+ num_attention_heads=32,
19
+ emb_dropout_prob=0.0,
20
+ attn_dropout_prob=0.0,
21
+ layer_norm_epsilon=1e-6,
22
+ initializer_range=0.02,
23
+ max_position_embeddings=8192,
24
+ scale_attn_weights=True,
25
+ use_cache=True,
26
+ bf16=False,
27
+ fp16=False,
28
+ fp32=False,
29
+ kv_channels=128,
30
+ rotary_pct=1.0,
31
+ rotary_emb_base=10000,
32
+ use_dynamic_ntk=True,
33
+ use_logn_attn=True,
34
+ use_flash_attn="auto",
35
+ intermediate_size=22016,
36
+ no_bias=True,
37
+ tie_word_embeddings=False,
38
+ use_cache_quantization=False,
39
+ use_cache_kernel=False,
40
+ softmax_in_fp32=False,
41
+ **kwargs,
42
+ ):
43
+ self.vocab_size = vocab_size
44
+ self.hidden_size = hidden_size
45
+ self.intermediate_size = intermediate_size
46
+ self.num_hidden_layers = num_hidden_layers
47
+ self.num_attention_heads = num_attention_heads
48
+ self.emb_dropout_prob = emb_dropout_prob
49
+ self.attn_dropout_prob = attn_dropout_prob
50
+ self.layer_norm_epsilon = layer_norm_epsilon
51
+ self.initializer_range = initializer_range
52
+ self.scale_attn_weights = scale_attn_weights
53
+ self.use_cache = use_cache
54
+ self.max_position_embeddings = max_position_embeddings
55
+ self.bf16 = bf16
56
+ self.fp16 = fp16
57
+ self.fp32 = fp32
58
+ self.kv_channels = kv_channels
59
+ self.rotary_pct = rotary_pct
60
+ self.rotary_emb_base = rotary_emb_base
61
+ self.use_dynamic_ntk = use_dynamic_ntk
62
+ self.use_logn_attn = use_logn_attn
63
+ self.use_flash_attn = use_flash_attn
64
+ self.no_bias = no_bias
65
+ self.use_cache_quantization = use_cache_quantization
66
+ self.use_cache_kernel = use_cache_kernel
67
+ self.softmax_in_fp32 = softmax_in_fp32
68
+ super().__init__(
69
+ tie_word_embeddings=tie_word_embeddings,
70
+ **kwargs
71
+ )
Qwen/Qwen-1_8B-Chat/cpp_kernels.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch.utils import cpp_extension
2
+ import pathlib
3
+ import os
4
+ import subprocess
5
+
6
+ def _get_cuda_bare_metal_version(cuda_dir):
7
+ raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"],
8
+ universal_newlines=True)
9
+ output = raw_output.split()
10
+ release_idx = output.index("release") + 1
11
+ release = output[release_idx].split(".")
12
+ bare_metal_major = release[0]
13
+ bare_metal_minor = release[1][0]
14
+
15
+ return raw_output, bare_metal_major, bare_metal_minor
16
+
17
+ def _create_build_dir(buildpath):
18
+ try:
19
+ os.mkdir(buildpath)
20
+ except OSError:
21
+ if not os.path.isdir(buildpath):
22
+ print(f"Creation of the build directory {buildpath} failed")
23
+
24
+ # Check if cuda 11 is installed for compute capability 8.0
25
+ cc_flag = []
26
+ _, bare_metal_major, bare_metal_minor = _get_cuda_bare_metal_version(cpp_extension.CUDA_HOME)
27
+ if int(bare_metal_major) >= 11:
28
+ cc_flag.append('-gencode')
29
+ cc_flag.append('arch=compute_80,code=sm_80')
30
+ if int(bare_metal_minor) >= 7:
31
+ cc_flag.append('-gencode')
32
+ cc_flag.append('arch=compute_90,code=sm_90')
33
+
34
+ # Build path
35
+ srcpath = pathlib.Path(__file__).parent.absolute()
36
+ buildpath = srcpath / 'build'
37
+ _create_build_dir(buildpath)
38
+
39
+ def _cpp_extention_load_helper(name, sources, extra_cuda_flags):
40
+ return cpp_extension.load(
41
+ name=name,
42
+ sources=sources,
43
+ build_directory=buildpath,
44
+ extra_cflags=['-O3', ],
45
+ extra_cuda_cflags=['-O3',
46
+ '-gencode', 'arch=compute_70,code=sm_70',
47
+ '--use_fast_math'] + extra_cuda_flags + cc_flag,
48
+ verbose=1
49
+ )
50
+
51
+ extra_flags = []
52
+
53
+ cache_autogptq_cuda_256_sources = ["./cache_autogptq_cuda_256.cpp",
54
+ "./cache_autogptq_cuda_kernel_256.cu"]
55
+ cache_autogptq_cuda_256 = _cpp_extention_load_helper("cache_autogptq_cuda_256", cache_autogptq_cuda_256_sources, extra_flags)
Qwen/Qwen-1_8B-Chat/examples/react_prompt.md ADDED
@@ -0,0 +1,249 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ReAct Prompting 示例
2
+
3
+ 本文档将介绍如何用 ReAct Prompting 技术命令千问使用工具。
4
+
5
+ 本文档主要基本的原理概念介绍,并在文末附上了一些具体实现相关的 FAQ,但不含被调用插件的实际实现。如果您更喜欢一边调试实际可执行的代码、一边理解原理,可以转而阅读整合了 LangChain 常用工具的这个 [ipython notebook](https://github.com/QwenLM/Qwen-7B/blob/main/examples/langchain_tooluse.ipynb)。
6
+
7
+ 此外,本文档和前述的 ipython notebook 都仅介绍单轮对话的实现。如果想了解多轮对话下的实现,可参见 [react_demo.py](https://github.com/QwenLM/Qwen-7B/blob/main/examples/react_demo.py)。
8
+
9
+ ## 准备工作一:样例问题、样例工具
10
+
11
+ 假设我们有如下的一个适合用工具处理的 query,以及有夸克搜索、通义万相文生图这两个工具:
12
+
13
+ ```py
14
+ query = '现在给我画个五彩斑斓的黑。'
15
+
16
+ TOOLS = [
17
+ {
18
+ 'name_for_human':
19
+ '夸克搜索',
20
+ 'name_for_model':
21
+ 'quark_search',
22
+ 'description_for_model':
23
+ '夸克搜索是一个通用搜索引擎,可用于访问互联网、查询百科知识、了解时事新闻等。',
24
+ 'parameters': [{
25
+ 'name': 'search_query',
26
+ 'description': '搜索关键词或短语',
27
+ 'required': True,
28
+ 'schema': {
29
+ 'type': 'string'
30
+ },
31
+ }],
32
+ },
33
+ {
34
+ 'name_for_human':
35
+ '通义万相',
36
+ 'name_for_model':
37
+ 'image_gen',
38
+ 'description_for_model':
39
+ '通义万相是一个AI绘画(图像生成)服务,输入文本描述,返回根据文本作画得到的图片的URL',
40
+ 'parameters': [{
41
+ 'name': 'query',
42
+ 'description': '中文关键词,描述了希望图像具有什么内容',
43
+ 'required': True,
44
+ 'schema': {
45
+ 'type': 'string'
46
+ },
47
+ }],
48
+ },
49
+ ]
50
+ ```
51
+
52
+ ## 准备工作二:ReAct 模版
53
+
54
+ 我们将使用如下的 ReAct prompt 模版来激发千问使用工具的能力。
55
+
56
+ ```py
57
+ TOOL_DESC = """{name_for_model}: Call this tool to interact with the {name_for_human} API. What is the {name_for_human} API useful for? {description_for_model} Parameters: {parameters} Format the arguments as a JSON object."""
58
+
59
+ REACT_PROMPT = """Answer the following questions as best you can. You have access to the following tools:
60
+
61
+ {tool_descs}
62
+
63
+ Use the following format:
64
+
65
+ Question: the input question you must answer
66
+ Thought: you should always think about what to do
67
+ Action: the action to take, should be one of [{tool_names}]
68
+ Action Input: the input to the action
69
+ Observation: the result of the action
70
+ ... (this Thought/Action/Action Input/Observation can be repeated zero or more times)
71
+ Thought: I now know the final answer
72
+ Final Answer: the final answer to the original input question
73
+
74
+ Begin!
75
+
76
+ Question: {query}"""
77
+ ```
78
+
79
+ ## 步骤一:让千问判断要调用什么工具、生成工具入参
80
+
81
+ 首先我们需要根据 ReAct prompt 模版、query、工具的信息构建 prompt:
82
+
83
+ ```py
84
+ tool_descs = []
85
+ tool_names = []
86
+ for info in TOOLS:
87
+ tool_descs.append(
88
+ TOOL_DESC.format(
89
+ name_for_model=info['name_for_model'],
90
+ name_for_human=info['name_for_human'],
91
+ description_for_model=info['description_for_model'],
92
+ parameters=json.dumps(
93
+ info['parameters'], ensure_ascii=False),
94
+ )
95
+ )
96
+ tool_names.append(info['name_for_model'])
97
+ tool_descs = '\n\n'.join(tool_descs)
98
+ tool_names = ','.join(tool_names)
99
+
100
+ prompt = REACT_PROMPT.format(tool_descs=tool_descs, tool_names=tool_names, query=query)
101
+ print(prompt)
102
+ ```
103
+
104
+ 打印出来的、构建好的 prompt 如下:
105
+
106
+ ```
107
+ Answer the following questions as best you can. You have access to the following tools:
108
+
109
+ quark_search: Call this tool to interact with the 夸克搜索 API. What is the 夸克搜索 API useful for? 夸克搜索是一个通用搜索引擎,可用于访问互联网、查询百科知识、了解时事新闻等。 Parameters: [{"name": "search_query", "description": "搜索关键词或短语", "required": true, "schema": {"type": "string"}}] Format the arguments as a JSON object.
110
+
111
+ image_gen: Call this tool to interact with the 通义万相 API. What is the 通义万相 API useful for? 通义万相是一个AI绘画(图像生成)服务,输入文本描述,返回根据文本作画得到的图片的URL Parameters: [{"name": "query", "description": "中文关键词,描述了希望图像具有什么内容", "required": true, "schema": {"type": "string"}}] Format the arguments as a JSON object.
112
+
113
+ Use the following format:
114
+
115
+ Question: the input question you must answer
116
+ Thought: you should always think about what to do
117
+ Action: the action to take, should be one of [quark_search,image_gen]
118
+ Action Input: the input to the action
119
+ Observation: the result of the action
120
+ ... (this Thought/Action/Action Input/Observation can be repeated zero or more times)
121
+ Thought: I now know the final answer
122
+ Final Answer: the final answer to the original input question
123
+
124
+ Begin!
125
+
126
+ Question: 现在给我画个五彩斑斓的黑。
127
+ ```
128
+
129
+ 将这个 prompt 送入千问,并记得设置 "Observation" 为 stop word (见本文末尾的 FAQ)—— 即让千问在预测到要生成的下一个词是 "Observation" 时马上停止生成 —— 则千问在得到这个 prompt 后会生成如下的结果:
130
+
131
+ ![](../assets/react_tutorial_001.png)
132
+
133
+ ```
134
+ Thought: 我应该使用通义万相API来生成一张五彩斑斓的黑的图片。
135
+ Action: image_gen
136
+ Action Input: {"query": "五彩斑斓的黑"}
137
+ ```
138
+
139
+ 在得到这个结果后,调用千问的开发者可以通过简单的解析提取出 `{"query": "五彩斑斓的黑"}` 并基于这个解析结果调用文生图服务 —— 这部分逻辑需要开发者自行实现,或者也可以使用千问商业版,商业版本将内部集成相关逻辑。
140
+
141
+ ## 步骤二:让千问根据插件返回结果继续作答
142
+
143
+ 让我们假设文生图插件返回了如下结果:
144
+
145
+ ```
146
+ {"status_code": 200, "request_id": "3d894da2-0e26-9b7c-bd90-102e5250ae03", "code": null, "message": "", "output": {"task_id": "2befaa09-a8b3-4740-ada9-4d00c2758b05", "task_status": "SUCCEEDED", "results": [{"url": "https://dashscope-result-sh.oss-cn-shanghai.aliyuncs.com/1e5e2015/20230801/1509/6b26bb83-469e-4c70-bff4-a9edd1e584f3-1.png"}], "task_metrics": {"TOTAL": 1, "SUCCEEDED": 1, "FAILED": 0}}, "usage": {"image_count": 1}}
147
+ ```
148
+
149
+ ![](../assets/wanx_colorful_black.png)
150
+
151
+ 接下来,我们可以将之前首次请求千问时用的 prompt 和 调用文生图插件的结果拼接成如下的新 prompt:
152
+
153
+ ```
154
+ Answer the following questions as best you can. You have access to the following tools:
155
+
156
+ quark_search: Call this tool to interact with the 夸克搜索 API. What is the 夸克搜索 API useful for? 夸克搜索是一个通用搜索引擎,可用于访问互联网、查询百科知识、了解时事新闻等。 Parameters: [{"name": "search_query", "description": "搜索关键词或短语", "required": true, "schema": {"type": "string"}}] Format the arguments as a JSON object.
157
+
158
+ image_gen: Call this tool to interact with the 通义万相 API. What is the 通义万相 API useful for? 通义万相是一个AI绘画(图像生成)服务,输入文本描述,返回根据文本作画得到的图片的URL Parameters: [{"name": "query", "description": "中文关键词,描述了希望图像具有什么内容", "required": true, "schema": {"type": "string"}}] Format the arguments as a JSON object.
159
+
160
+ Use the following format:
161
+
162
+ Question: the input question you must answer
163
+ Thought: you should always think about what to do
164
+ Action: the action to take, should be one of [quark_search,image_gen]
165
+ Action Input: the input to the action
166
+ Observation: the result of the action
167
+ ... (this Thought/Action/Action Input/Observation can be repeated zero or more times)
168
+ Thought: I now know the final answer
169
+ Final Answer: the final answer to the original input question
170
+
171
+ Begin!
172
+
173
+ Question: 现在给我画个五彩斑斓的黑。
174
+ Thought: 我应该使用通义万相API来生成一张五彩斑斓的黑的图片。
175
+ Action: image_gen
176
+ Action Input: {"query": "五彩斑斓的黑"}
177
+ Observation: {"status_code": 200, "request_id": "3d894da2-0e26-9b7c-bd90-102e5250ae03", "code": null, "message": "", "output": {"task_id": "2befaa09-a8b3-4740-ada9-4d00c2758b05", "task_status": "SUCCEEDED", "results": [{"url": "https://dashscope-result-sh.oss-cn-shanghai.aliyuncs.com/1e5e2015/20230801/1509/6b26bb83-469e-4c70-bff4-a9edd1e584f3-1.png"}], "task_metrics": {"TOTAL": 1, "SUCCEEDED": 1, "FAILED": 0}}, "usage": {"image_count": 1}}
178
+ ```
179
+
180
+ 用这个新的拼接了文生图插件结果的新 prompt 去调用千问,将得到如下的最终回复:
181
+
182
+ ![](../assets/react_tutorial_002.png)
183
+
184
+ ```
185
+ Thought: 我已经成功使用通义万相API生成了一张五彩斑斓的黑的图片。
186
+ Final Answer: 我已经成功使用通义万相API生成了一张五彩斑斓的黑的图片https://dashscope-result-sh.oss-cn-shanghai.aliyuncs.com/1e5e2015/20230801/1509/6b26bb83-469e-4c70-bff4-a9edd1e584f3-1.png。
187
+ ```
188
+
189
+ 虽然对于文生图来说,这个第二次调用千问的步骤显得多余。但是对于搜索插件、代码执行插件、计算器插件等别的插件来说,这个第二次调用千问的步骤给了千问提炼、总结插件返回结果的机会。
190
+
191
+ ## FAQ
192
+
193
+ **怎么配置 "Observation" 这个 stop word?**
194
+
195
+ 通过 chat 接口的 stop_words_ids 指定:
196
+ ```py
197
+ react_stop_words = [
198
+ # tokenizer.encode('Observation'), # [37763, 367]
199
+ tokenizer.encode('Observation:'), # [37763, 367, 25]
200
+ tokenizer.encode('Observation:\n'), # [37763, 367, 510]
201
+ ]
202
+ response, history = model.chat(
203
+ tokenizer, query, history,
204
+ stop_words_ids=react_stop_words # 此接口用于增加 stop words
205
+ )
206
+ ```
207
+
208
+ 如果报错称不存在 stop_words_ids 此参数,可能是因为您用了老的代码,请重新执行 from_pretrained 拉取新的代码和模型。
209
+
210
+ 需要注意的是,当前的 tokenizer 对 `\n` 有一系列较复杂的聚合操作。比如例子中的`:\n`这两个字符便被聚合成了一个 token。因此配置 stop words 需要非常细致地预估 tokenizer 的行为。
211
+
212
+ **对 top_p 等推理参数有调参建议吗?**
213
+
214
+ 通常来讲,较低的 top_p 会有更高的准确度,但会牺牲回答的多样性、且更易出现重复某个词句的现象。
215
+
216
+ 可以按如下方式调整 top_p 为 0.5:
217
+ ```py
218
+ model.generation_config.top_p = 0.5
219
+ ```
220
+
221
+ 特别的,可以用如下方式关闭 top-p sampling,改用 greedy sampling,效果上相当于 top_p=0 或 temperature=0:
222
+ ```py
223
+ model.generation_config.do_sample = False # greedy decoding
224
+ ```
225
+
226
+ 此外,我们在 `model.chat()` 接口也提供了调整 top_p 等参数的接口。
227
+
228
+ **有解析Action、Action Input的参考代码吗?**
229
+
230
+ 有的,可以参考:
231
+ ```py
232
+ def parse_latest_plugin_call(text: str) -> Tuple[str, str]:
233
+ i = text.rfind('\nAction:')
234
+ j = text.rfind('\nAction Input:')
235
+ k = text.rfind('\nObservation:')
236
+ if 0 <= i < j: # If the text has `Action` and `Action input`,
237
+ if k < j: # but does not contain `Observation`,
238
+ # then it is likely that `Observation` is ommited by the LLM,
239
+ # because the output text may have discarded the stop word.
240
+ text = text.rstrip() + '\nObservation:' # Add it back.
241
+ k = text.rfind('\nObservation:')
242
+ if 0 <= i < j < k:
243
+ plugin_name = text[i + len('\nAction:'):j].strip()
244
+ plugin_args = text[j + len('\nAction Input:'):k].strip()
245
+ return plugin_name, plugin_args
246
+ return '', ''
247
+ ```
248
+
249
+ 此外,如果输出的 Action Input 内容是一段表示 JSON 对象的文本,我们建议使用 `json5` 包的 `json5.loads(...)` 方法加载。
Qwen/Qwen-1_8B-Chat/generation_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "chat_format": "chatml",
3
+ "eos_token_id": 151643,
4
+ "pad_token_id": 151643,
5
+ "max_window_size": 6144,
6
+ "max_new_tokens": 512,
7
+ "do_sample": true,
8
+ "top_k": 0,
9
+ "top_p": 0.8,
10
+ "repetition_penalty": 1.1,
11
+ "transformers_version": "4.31.0"
12
+ }
Qwen/Qwen-1_8B-Chat/model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:afe102dfe02cbf973a5647a4ccef97dad0f088ae12a749e67000f25af3c6c997
3
+ size 2039259008
Qwen/Qwen-1_8B-Chat/model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f710454106cacb0bee8138866573f1ecd453c3cd55f122b74e70a0e392d21435
3
+ size 1634419264
Qwen/Qwen-1_8B-Chat/model.safetensors.index.json ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 3673657344
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "transformer.h.0.attn.c_attn.bias": "model-00001-of-00002.safetensors",
8
+ "transformer.h.0.attn.c_attn.weight": "model-00001-of-00002.safetensors",
9
+ "transformer.h.0.attn.c_proj.weight": "model-00001-of-00002.safetensors",
10
+ "transformer.h.0.ln_1.weight": "model-00001-of-00002.safetensors",
11
+ "transformer.h.0.ln_2.weight": "model-00001-of-00002.safetensors",
12
+ "transformer.h.0.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
13
+ "transformer.h.0.mlp.w1.weight": "model-00001-of-00002.safetensors",
14
+ "transformer.h.0.mlp.w2.weight": "model-00001-of-00002.safetensors",
15
+ "transformer.h.1.attn.c_attn.bias": "model-00001-of-00002.safetensors",
16
+ "transformer.h.1.attn.c_attn.weight": "model-00001-of-00002.safetensors",
17
+ "transformer.h.1.attn.c_proj.weight": "model-00001-of-00002.safetensors",
18
+ "transformer.h.1.ln_1.weight": "model-00001-of-00002.safetensors",
19
+ "transformer.h.1.ln_2.weight": "model-00001-of-00002.safetensors",
20
+ "transformer.h.1.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
21
+ "transformer.h.1.mlp.w1.weight": "model-00001-of-00002.safetensors",
22
+ "transformer.h.1.mlp.w2.weight": "model-00001-of-00002.safetensors",
23
+ "transformer.h.10.attn.c_attn.bias": "model-00001-of-00002.safetensors",
24
+ "transformer.h.10.attn.c_attn.weight": "model-00001-of-00002.safetensors",
25
+ "transformer.h.10.attn.c_proj.weight": "model-00001-of-00002.safetensors",
26
+ "transformer.h.10.ln_1.weight": "model-00001-of-00002.safetensors",
27
+ "transformer.h.10.ln_2.weight": "model-00001-of-00002.safetensors",
28
+ "transformer.h.10.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
29
+ "transformer.h.10.mlp.w1.weight": "model-00001-of-00002.safetensors",
30
+ "transformer.h.10.mlp.w2.weight": "model-00001-of-00002.safetensors",
31
+ "transformer.h.11.attn.c_attn.bias": "model-00001-of-00002.safetensors",
32
+ "transformer.h.11.attn.c_attn.weight": "model-00001-of-00002.safetensors",
33
+ "transformer.h.11.attn.c_proj.weight": "model-00001-of-00002.safetensors",
34
+ "transformer.h.11.ln_1.weight": "model-00001-of-00002.safetensors",
35
+ "transformer.h.11.ln_2.weight": "model-00001-of-00002.safetensors",
36
+ "transformer.h.11.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
37
+ "transformer.h.11.mlp.w1.weight": "model-00001-of-00002.safetensors",
38
+ "transformer.h.11.mlp.w2.weight": "model-00001-of-00002.safetensors",
39
+ "transformer.h.12.attn.c_attn.bias": "model-00001-of-00002.safetensors",
40
+ "transformer.h.12.attn.c_attn.weight": "model-00001-of-00002.safetensors",
41
+ "transformer.h.12.attn.c_proj.weight": "model-00001-of-00002.safetensors",
42
+ "transformer.h.12.ln_1.weight": "model-00001-of-00002.safetensors",
43
+ "transformer.h.12.ln_2.weight": "model-00001-of-00002.safetensors",
44
+ "transformer.h.12.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
45
+ "transformer.h.12.mlp.w1.weight": "model-00001-of-00002.safetensors",
46
+ "transformer.h.12.mlp.w2.weight": "model-00001-of-00002.safetensors",
47
+ "transformer.h.13.attn.c_attn.bias": "model-00001-of-00002.safetensors",
48
+ "transformer.h.13.attn.c_attn.weight": "model-00001-of-00002.safetensors",
49
+ "transformer.h.13.attn.c_proj.weight": "model-00001-of-00002.safetensors",
50
+ "transformer.h.13.ln_1.weight": "model-00001-of-00002.safetensors",
51
+ "transformer.h.13.ln_2.weight": "model-00001-of-00002.safetensors",
52
+ "transformer.h.13.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
53
+ "transformer.h.13.mlp.w1.weight": "model-00001-of-00002.safetensors",
54
+ "transformer.h.13.mlp.w2.weight": "model-00001-of-00002.safetensors",
55
+ "transformer.h.14.attn.c_attn.bias": "model-00002-of-00002.safetensors",
56
+ "transformer.h.14.attn.c_attn.weight": "model-00002-of-00002.safetensors",
57
+ "transformer.h.14.attn.c_proj.weight": "model-00002-of-00002.safetensors",
58
+ "transformer.h.14.ln_1.weight": "model-00001-of-00002.safetensors",
59
+ "transformer.h.14.ln_2.weight": "model-00002-of-00002.safetensors",
60
+ "transformer.h.14.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
61
+ "transformer.h.14.mlp.w1.weight": "model-00002-of-00002.safetensors",
62
+ "transformer.h.14.mlp.w2.weight": "model-00002-of-00002.safetensors",
63
+ "transformer.h.15.attn.c_attn.bias": "model-00002-of-00002.safetensors",
64
+ "transformer.h.15.attn.c_attn.weight": "model-00002-of-00002.safetensors",
65
+ "transformer.h.15.attn.c_proj.weight": "model-00002-of-00002.safetensors",
66
+ "transformer.h.15.ln_1.weight": "model-00002-of-00002.safetensors",
67
+ "transformer.h.15.ln_2.weight": "model-00002-of-00002.safetensors",
68
+ "transformer.h.15.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
69
+ "transformer.h.15.mlp.w1.weight": "model-00002-of-00002.safetensors",
70
+ "transformer.h.15.mlp.w2.weight": "model-00002-of-00002.safetensors",
71
+ "transformer.h.16.attn.c_attn.bias": "model-00002-of-00002.safetensors",
72
+ "transformer.h.16.attn.c_attn.weight": "model-00002-of-00002.safetensors",
73
+ "transformer.h.16.attn.c_proj.weight": "model-00002-of-00002.safetensors",
74
+ "transformer.h.16.ln_1.weight": "model-00002-of-00002.safetensors",
75
+ "transformer.h.16.ln_2.weight": "model-00002-of-00002.safetensors",
76
+ "transformer.h.16.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
77
+ "transformer.h.16.mlp.w1.weight": "model-00002-of-00002.safetensors",
78
+ "transformer.h.16.mlp.w2.weight": "model-00002-of-00002.safetensors",
79
+ "transformer.h.17.attn.c_attn.bias": "model-00002-of-00002.safetensors",
80
+ "transformer.h.17.attn.c_attn.weight": "model-00002-of-00002.safetensors",
81
+ "transformer.h.17.attn.c_proj.weight": "model-00002-of-00002.safetensors",
82
+ "transformer.h.17.ln_1.weight": "model-00002-of-00002.safetensors",
83
+ "transformer.h.17.ln_2.weight": "model-00002-of-00002.safetensors",
84
+ "transformer.h.17.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
85
+ "transformer.h.17.mlp.w1.weight": "model-00002-of-00002.safetensors",
86
+ "transformer.h.17.mlp.w2.weight": "model-00002-of-00002.safetensors",
87
+ "transformer.h.18.attn.c_attn.bias": "model-00002-of-00002.safetensors",
88
+ "transformer.h.18.attn.c_attn.weight": "model-00002-of-00002.safetensors",
89
+ "transformer.h.18.attn.c_proj.weight": "model-00002-of-00002.safetensors",
90
+ "transformer.h.18.ln_1.weight": "model-00002-of-00002.safetensors",
91
+ "transformer.h.18.ln_2.weight": "model-00002-of-00002.safetensors",
92
+ "transformer.h.18.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
93
+ "transformer.h.18.mlp.w1.weight": "model-00002-of-00002.safetensors",
94
+ "transformer.h.18.mlp.w2.weight": "model-00002-of-00002.safetensors",
95
+ "transformer.h.19.attn.c_attn.bias": "model-00002-of-00002.safetensors",
96
+ "transformer.h.19.attn.c_attn.weight": "model-00002-of-00002.safetensors",
97
+ "transformer.h.19.attn.c_proj.weight": "model-00002-of-00002.safetensors",
98
+ "transformer.h.19.ln_1.weight": "model-00002-of-00002.safetensors",
99
+ "transformer.h.19.ln_2.weight": "model-00002-of-00002.safetensors",
100
+ "transformer.h.19.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
101
+ "transformer.h.19.mlp.w1.weight": "model-00002-of-00002.safetensors",
102
+ "transformer.h.19.mlp.w2.weight": "model-00002-of-00002.safetensors",
103
+ "transformer.h.2.attn.c_attn.bias": "model-00001-of-00002.safetensors",
104
+ "transformer.h.2.attn.c_attn.weight": "model-00001-of-00002.safetensors",
105
+ "transformer.h.2.attn.c_proj.weight": "model-00001-of-00002.safetensors",
106
+ "transformer.h.2.ln_1.weight": "model-00001-of-00002.safetensors",
107
+ "transformer.h.2.ln_2.weight": "model-00001-of-00002.safetensors",
108
+ "transformer.h.2.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
109
+ "transformer.h.2.mlp.w1.weight": "model-00001-of-00002.safetensors",
110
+ "transformer.h.2.mlp.w2.weight": "model-00001-of-00002.safetensors",
111
+ "transformer.h.20.attn.c_attn.bias": "model-00002-of-00002.safetensors",
112
+ "transformer.h.20.attn.c_attn.weight": "model-00002-of-00002.safetensors",
113
+ "transformer.h.20.attn.c_proj.weight": "model-00002-of-00002.safetensors",
114
+ "transformer.h.20.ln_1.weight": "model-00002-of-00002.safetensors",
115
+ "transformer.h.20.ln_2.weight": "model-00002-of-00002.safetensors",
116
+ "transformer.h.20.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
117
+ "transformer.h.20.mlp.w1.weight": "model-00002-of-00002.safetensors",
118
+ "transformer.h.20.mlp.w2.weight": "model-00002-of-00002.safetensors",
119
+ "transformer.h.21.attn.c_attn.bias": "model-00002-of-00002.safetensors",
120
+ "transformer.h.21.attn.c_attn.weight": "model-00002-of-00002.safetensors",
121
+ "transformer.h.21.attn.c_proj.weight": "model-00002-of-00002.safetensors",
122
+ "transformer.h.21.ln_1.weight": "model-00002-of-00002.safetensors",
123
+ "transformer.h.21.ln_2.weight": "model-00002-of-00002.safetensors",
124
+ "transformer.h.21.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
125
+ "transformer.h.21.mlp.w1.weight": "model-00002-of-00002.safetensors",
126
+ "transformer.h.21.mlp.w2.weight": "model-00002-of-00002.safetensors",
127
+ "transformer.h.22.attn.c_attn.bias": "model-00002-of-00002.safetensors",
128
+ "transformer.h.22.attn.c_attn.weight": "model-00002-of-00002.safetensors",
129
+ "transformer.h.22.attn.c_proj.weight": "model-00002-of-00002.safetensors",
130
+ "transformer.h.22.ln_1.weight": "model-00002-of-00002.safetensors",
131
+ "transformer.h.22.ln_2.weight": "model-00002-of-00002.safetensors",
132
+ "transformer.h.22.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
133
+ "transformer.h.22.mlp.w1.weight": "model-00002-of-00002.safetensors",
134
+ "transformer.h.22.mlp.w2.weight": "model-00002-of-00002.safetensors",
135
+ "transformer.h.23.attn.c_attn.bias": "model-00002-of-00002.safetensors",
136
+ "transformer.h.23.attn.c_attn.weight": "model-00002-of-00002.safetensors",
137
+ "transformer.h.23.attn.c_proj.weight": "model-00002-of-00002.safetensors",
138
+ "transformer.h.23.ln_1.weight": "model-00002-of-00002.safetensors",
139
+ "transformer.h.23.ln_2.weight": "model-00002-of-00002.safetensors",
140
+ "transformer.h.23.mlp.c_proj.weight": "model-00002-of-00002.safetensors",
141
+ "transformer.h.23.mlp.w1.weight": "model-00002-of-00002.safetensors",
142
+ "transformer.h.23.mlp.w2.weight": "model-00002-of-00002.safetensors",
143
+ "transformer.h.3.attn.c_attn.bias": "model-00001-of-00002.safetensors",
144
+ "transformer.h.3.attn.c_attn.weight": "model-00001-of-00002.safetensors",
145
+ "transformer.h.3.attn.c_proj.weight": "model-00001-of-00002.safetensors",
146
+ "transformer.h.3.ln_1.weight": "model-00001-of-00002.safetensors",
147
+ "transformer.h.3.ln_2.weight": "model-00001-of-00002.safetensors",
148
+ "transformer.h.3.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
149
+ "transformer.h.3.mlp.w1.weight": "model-00001-of-00002.safetensors",
150
+ "transformer.h.3.mlp.w2.weight": "model-00001-of-00002.safetensors",
151
+ "transformer.h.4.attn.c_attn.bias": "model-00001-of-00002.safetensors",
152
+ "transformer.h.4.attn.c_attn.weight": "model-00001-of-00002.safetensors",
153
+ "transformer.h.4.attn.c_proj.weight": "model-00001-of-00002.safetensors",
154
+ "transformer.h.4.ln_1.weight": "model-00001-of-00002.safetensors",
155
+ "transformer.h.4.ln_2.weight": "model-00001-of-00002.safetensors",
156
+ "transformer.h.4.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
157
+ "transformer.h.4.mlp.w1.weight": "model-00001-of-00002.safetensors",
158
+ "transformer.h.4.mlp.w2.weight": "model-00001-of-00002.safetensors",
159
+ "transformer.h.5.attn.c_attn.bias": "model-00001-of-00002.safetensors",
160
+ "transformer.h.5.attn.c_attn.weight": "model-00001-of-00002.safetensors",
161
+ "transformer.h.5.attn.c_proj.weight": "model-00001-of-00002.safetensors",
162
+ "transformer.h.5.ln_1.weight": "model-00001-of-00002.safetensors",
163
+ "transformer.h.5.ln_2.weight": "model-00001-of-00002.safetensors",
164
+ "transformer.h.5.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
165
+ "transformer.h.5.mlp.w1.weight": "model-00001-of-00002.safetensors",
166
+ "transformer.h.5.mlp.w2.weight": "model-00001-of-00002.safetensors",
167
+ "transformer.h.6.attn.c_attn.bias": "model-00001-of-00002.safetensors",
168
+ "transformer.h.6.attn.c_attn.weight": "model-00001-of-00002.safetensors",
169
+ "transformer.h.6.attn.c_proj.weight": "model-00001-of-00002.safetensors",
170
+ "transformer.h.6.ln_1.weight": "model-00001-of-00002.safetensors",
171
+ "transformer.h.6.ln_2.weight": "model-00001-of-00002.safetensors",
172
+ "transformer.h.6.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
173
+ "transformer.h.6.mlp.w1.weight": "model-00001-of-00002.safetensors",
174
+ "transformer.h.6.mlp.w2.weight": "model-00001-of-00002.safetensors",
175
+ "transformer.h.7.attn.c_attn.bias": "model-00001-of-00002.safetensors",
176
+ "transformer.h.7.attn.c_attn.weight": "model-00001-of-00002.safetensors",
177
+ "transformer.h.7.attn.c_proj.weight": "model-00001-of-00002.safetensors",
178
+ "transformer.h.7.ln_1.weight": "model-00001-of-00002.safetensors",
179
+ "transformer.h.7.ln_2.weight": "model-00001-of-00002.safetensors",
180
+ "transformer.h.7.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
181
+ "transformer.h.7.mlp.w1.weight": "model-00001-of-00002.safetensors",
182
+ "transformer.h.7.mlp.w2.weight": "model-00001-of-00002.safetensors",
183
+ "transformer.h.8.attn.c_attn.bias": "model-00001-of-00002.safetensors",
184
+ "transformer.h.8.attn.c_attn.weight": "model-00001-of-00002.safetensors",
185
+ "transformer.h.8.attn.c_proj.weight": "model-00001-of-00002.safetensors",
186
+ "transformer.h.8.ln_1.weight": "model-00001-of-00002.safetensors",
187
+ "transformer.h.8.ln_2.weight": "model-00001-of-00002.safetensors",
188
+ "transformer.h.8.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
189
+ "transformer.h.8.mlp.w1.weight": "model-00001-of-00002.safetensors",
190
+ "transformer.h.8.mlp.w2.weight": "model-00001-of-00002.safetensors",
191
+ "transformer.h.9.attn.c_attn.bias": "model-00001-of-00002.safetensors",
192
+ "transformer.h.9.attn.c_attn.weight": "model-00001-of-00002.safetensors",
193
+ "transformer.h.9.attn.c_proj.weight": "model-00001-of-00002.safetensors",
194
+ "transformer.h.9.ln_1.weight": "model-00001-of-00002.safetensors",
195
+ "transformer.h.9.ln_2.weight": "model-00001-of-00002.safetensors",
196
+ "transformer.h.9.mlp.c_proj.weight": "model-00001-of-00002.safetensors",
197
+ "transformer.h.9.mlp.w1.weight": "model-00001-of-00002.safetensors",
198
+ "transformer.h.9.mlp.w2.weight": "model-00001-of-00002.safetensors",
199
+ "transformer.ln_f.weight": "model-00002-of-00002.safetensors",
200
+ "transformer.wte.weight": "model-00001-of-00002.safetensors"
201
+ }
202
+ }
Qwen/Qwen-1_8B-Chat/modeling_qwen.py ADDED
@@ -0,0 +1,1363 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ import copy
7
+ import importlib
8
+ import math
9
+ import pathlib
10
+ from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List, Any, Generator
11
+
12
+ import torch
13
+ import torch.nn.functional as F
14
+ import torch.utils.checkpoint
15
+ import warnings
16
+
17
+ from torch.nn import CrossEntropyLoss
18
+ from transformers import PreTrainedTokenizer, GenerationConfig, StoppingCriteriaList
19
+ from transformers.generation.logits_process import LogitsProcessorList
20
+
21
+ if TYPE_CHECKING:
22
+ from transformers.generation.streamers import BaseStreamer
23
+ from transformers.generation.utils import GenerateOutput
24
+ from transformers.modeling_outputs import (
25
+ BaseModelOutputWithPast,
26
+ CausalLMOutputWithPast,
27
+ )
28
+ from transformers.modeling_utils import PreTrainedModel
29
+ from transformers.utils import logging
30
+
31
+ try:
32
+ from einops import rearrange
33
+ except ImportError:
34
+ rearrange = None
35
+ from torch import nn
36
+
37
+ SUPPORT_CUDA = torch.cuda.is_available()
38
+ SUPPORT_BF16 = SUPPORT_CUDA and torch.cuda.is_bf16_supported()
39
+ SUPPORT_FP16 = SUPPORT_CUDA and torch.cuda.get_device_capability(0)[0] >= 7
40
+ SUPPORT_TORCH2 = hasattr(torch, '__version__') and int(torch.__version__.split(".")[0]) >= 2
41
+
42
+
43
+ from .configuration_qwen import QWenConfig
44
+ from .qwen_generation_utils import (
45
+ HistoryType,
46
+ make_context,
47
+ decode_tokens,
48
+ get_stop_words_ids,
49
+ StopWordsLogitsProcessor,
50
+ )
51
+
52
+
53
+ logger = logging.get_logger(__name__)
54
+
55
+ _CHECKPOINT_FOR_DOC = "qwen"
56
+ _CONFIG_FOR_DOC = "QWenConfig"
57
+
58
+ QWen_PRETRAINED_MODEL_ARCHIVE_LIST = ["qwen-7b"]
59
+
60
+ _ERROR_BAD_CHAT_FORMAT = """\
61
+ We detect you are probably using the pretrained model (rather than chat model) for chatting, since the chat_format in generation_config is not "chatml".
62
+ If you are directly using the model downloaded from Huggingface, please make sure you are using our "Qwen/Qwen-7B-Chat" Huggingface model (rather than "Qwen/Qwen-7B") when you call model.chat().
63
+ 我们检测到您可能在使用预训练模型(而非chat模型)进行多轮chat,因为您当前在generation_config指定的chat_format,并未设置为我们在对话中所支持的"chatml"格式。
64
+ 如果您在直接使用我们从Huggingface提供的模型,请确保您在调用model.chat()时,使用的是"Qwen/Qwen-7B-Chat"模型(而非"Qwen/Qwen-7B"预训练模型)。
65
+ """
66
+
67
+ _SENTINEL = object()
68
+ _ERROR_STREAM_IN_CHAT = """\
69
+ Pass argument `stream` to model.chat() is buggy, deprecated, and marked for removal. Please use model.chat_stream(...) instead of model.chat(..., stream=True).
70
+ 向model.chat()传入参数stream的用法可能存在Bug,该用法已被废弃,将在未来被移除。请使用model.chat_stream(...)代替model.chat(..., stream=True)。
71
+ """
72
+
73
+ _ERROR_INPUT_CPU_QUERY_WITH_FLASH_ATTN_ACTIVATED = """\
74
+ We detect you have activated flash attention support, but running model computation on CPU. Please make sure that your input data has been placed on GPU. If you actually want to run CPU computation, please following the readme and set device_map="cpu" to disable flash attention when loading the model (calling AutoModelForCausalLM.from_pretrained).
75
+ 检测到您的模型已激活了flash attention支持,但正在执行CPU运算任务。如使用flash attention,请您确认模型输入已经传到GPU上。如果您确认要执行CPU运算,请您在载入模型(调用AutoModelForCausalLM.from_pretrained)时,按照readme说法,指定device_map="cpu"以禁用flash attention。
76
+ """
77
+
78
+ apply_rotary_emb_func = None
79
+ rms_norm = None
80
+ flash_attn_unpadded_func = None
81
+ flash_attn_func = None
82
+
83
+ def _import_flash_attn():
84
+ global apply_rotary_emb_func, rms_norm, flash_attn_unpadded_func, flash_attn_func
85
+ try:
86
+ from flash_attn.layers.rotary import apply_rotary_emb_func as __apply_rotary_emb_func
87
+ apply_rotary_emb_func = __apply_rotary_emb_func
88
+ except ImportError:
89
+ logger.warn(
90
+ "Warning: import flash_attn rotary fail, please install FlashAttention rotary to get higher efficiency "
91
+ "https://github.com/Dao-AILab/flash-attention/tree/main/csrc/rotary"
92
+ )
93
+
94
+ try:
95
+ from flash_attn.ops.rms_norm import rms_norm as __rms_norm
96
+ rms_norm = __rms_norm
97
+ except ImportError:
98
+ logger.warn(
99
+ "Warning: import flash_attn rms_norm fail, please install FlashAttention layer_norm to get higher efficiency "
100
+ "https://github.com/Dao-AILab/flash-attention/tree/main/csrc/layer_norm"
101
+ )
102
+
103
+ try:
104
+ import flash_attn
105
+ _flash_attn_func = None
106
+ if not hasattr(flash_attn, '__version__'):
107
+ from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
108
+ else:
109
+ if int(flash_attn.__version__.split(".")[0]) >= 2:
110
+ if int(flash_attn.__version__.split(".")[1]) >= 1:
111
+ from flash_attn.flash_attn_interface import flash_attn_func as _flash_attn_func
112
+ from flash_attn.flash_attn_interface import flash_attn_varlen_func as __flash_attn_unpadded_func
113
+ else:
114
+ from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
115
+ flash_attn_unpadded_func = __flash_attn_unpadded_func
116
+ flash_attn_func = _flash_attn_func
117
+ except ImportError:
118
+ logger.warn(
119
+ "Warning: import flash_attn fail, please install FlashAttention to get higher efficiency "
120
+ "https://github.com/Dao-AILab/flash-attention"
121
+ )
122
+
123
+ def quantize_cache_v(fdata, bits, qmax, qmin):
124
+ # b, s, head, h-dim->b, head, s, h-dim
125
+ qtype = torch.uint8
126
+ device = fdata.device
127
+ shape = fdata.shape
128
+
129
+ fdata_cal = torch.flatten(fdata, 2)
130
+ fmax = torch.amax(fdata_cal, dim=-1, keepdim=True)
131
+ fmin = torch.amin(fdata_cal, dim=-1, keepdim=True)
132
+ # Compute params
133
+ if qmax.device != fmax.device:
134
+ qmax = qmax.to(device)
135
+ qmin = qmin.to(device)
136
+ scale = (fmax - fmin) / (qmax - qmin)
137
+ zero = qmin - fmin / scale
138
+ scale = scale.unsqueeze(-1).repeat(1,1,shape[2],1).contiguous()
139
+ zero = zero.unsqueeze(-1).repeat(1,1,shape[2],1).contiguous()
140
+ # Quantize
141
+ res_data = fdata / scale + zero
142
+ qdata = torch.clamp(res_data, qmin, qmax).to(qtype)
143
+ return qdata.contiguous(), scale, zero
144
+
145
+ def dequantize_cache_torch(qdata, scale, zero):
146
+ data = scale * (qdata - zero)
147
+ return data
148
+
149
+ class FlashSelfAttention(torch.nn.Module):
150
+ def __init__(
151
+ self,
152
+ causal=False,
153
+ softmax_scale=None,
154
+ attention_dropout=0.0,
155
+ ):
156
+ super().__init__()
157
+ assert flash_attn_unpadded_func is not None, (
158
+ "Please install FlashAttention first, " "e.g., with pip install flash-attn"
159
+ )
160
+ assert (
161
+ rearrange is not None
162
+ ), "Please install einops first, e.g., with pip install einops"
163
+ self.causal = causal
164
+ self.softmax_scale = softmax_scale
165
+ self.dropout_p = attention_dropout
166
+
167
+ def unpad_input(self, hidden_states, attention_mask):
168
+ valid_mask = attention_mask.squeeze(1).squeeze(1).eq(0)
169
+ seqlens_in_batch = valid_mask.sum(dim=-1, dtype=torch.int32)
170
+ indices = torch.nonzero(valid_mask.flatten(), as_tuple=False).flatten()
171
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
172
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
173
+ hidden_states = hidden_states[indices]
174
+ return hidden_states, indices, cu_seqlens, max_seqlen_in_batch
175
+
176
+ def pad_input(self, hidden_states, indices, batch, seqlen):
177
+ output = torch.zeros(batch * seqlen, *hidden_states.shape[1:], device=hidden_states.device,
178
+ dtype=hidden_states.dtype)
179
+ output[indices] = hidden_states
180
+ return rearrange(output, '(b s) ... -> b s ...', b=batch)
181
+
182
+ def forward(self, q, k, v, attention_mask=None):
183
+ assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q, k, v)))
184
+ assert all((i.is_cuda for i in (q, k, v)))
185
+ batch_size, seqlen_q = q.shape[0], q.shape[1]
186
+ seqlen_k = k.shape[1]
187
+ seqlen_out = seqlen_q
188
+
189
+ if flash_attn_func is not None and batch_size == 1:
190
+ dropout_p = self.dropout_p if self.training else 0
191
+ output = flash_attn_func(q, k, v, dropout_p, softmax_scale=self.softmax_scale, causal=self.causal)
192
+ return output
193
+
194
+ q, k, v = [rearrange(x, "b s ... -> (b s) ...") for x in [q, k, v]]
195
+ cu_seqlens_q = torch.arange(
196
+ 0,
197
+ (batch_size + 1) * seqlen_q,
198
+ step=seqlen_q,
199
+ dtype=torch.int32,
200
+ device=q.device,
201
+ )
202
+
203
+ if batch_size > 1 and attention_mask is not None:
204
+ k, indices_k, cu_seqlens_k, seqlen_k = self.unpad_input(k, attention_mask)
205
+ if q.size(0) == v.size(0):
206
+ q = q[indices_k]
207
+ cu_seqlens_q = cu_seqlens_k
208
+ seqlen_q = seqlen_k
209
+ v = v[indices_k]
210
+ else:
211
+ cu_seqlens_k = torch.arange(
212
+ 0,
213
+ (batch_size + 1) * seqlen_k,
214
+ step=seqlen_k,
215
+ dtype=torch.int32,
216
+ device=q.device,
217
+ )
218
+
219
+ if self.training:
220
+ assert seqlen_k == seqlen_q
221
+ is_causal = self.causal
222
+ dropout_p = self.dropout_p
223
+ else:
224
+ is_causal = seqlen_q == seqlen_k
225
+ dropout_p = 0
226
+
227
+ output = flash_attn_unpadded_func(
228
+ q,
229
+ k,
230
+ v,
231
+ cu_seqlens_q,
232
+ cu_seqlens_k,
233
+ seqlen_q,
234
+ seqlen_k,
235
+ dropout_p,
236
+ softmax_scale=self.softmax_scale,
237
+ causal=is_causal,
238
+ )
239
+ if batch_size > 1 and attention_mask is not None and seqlen_q == seqlen_k:
240
+ output = self.pad_input(output, indices_k, batch_size, seqlen_out)
241
+ else:
242
+ new_shape = (batch_size, output.shape[0] // batch_size) + output.shape[1:]
243
+ output = output.view(new_shape)
244
+ return output
245
+
246
+
247
+ class QWenAttention(nn.Module):
248
+ def __init__(self, config):
249
+ super().__init__()
250
+
251
+ self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
252
+ self.seq_length = config.seq_length
253
+
254
+ self.hidden_size = config.hidden_size
255
+ self.split_size = config.hidden_size
256
+ self.num_heads = config.num_attention_heads
257
+ self.head_dim = self.hidden_size // self.num_heads
258
+
259
+ self.use_flash_attn = config.use_flash_attn
260
+ self.scale_attn_weights = True
261
+
262
+ self.projection_size = config.kv_channels * config.num_attention_heads
263
+
264
+ assert self.projection_size % config.num_attention_heads == 0
265
+ self.hidden_size_per_attention_head = (
266
+ self.projection_size // config.num_attention_heads
267
+ )
268
+
269
+ self.c_attn = nn.Linear(config.hidden_size, 3 * self.projection_size)
270
+
271
+ self.c_proj = nn.Linear(
272
+ config.hidden_size, self.projection_size, bias=not config.no_bias
273
+ )
274
+
275
+ self.is_fp32 = not (config.bf16 or config.fp16)
276
+ if (
277
+ self.use_flash_attn
278
+ and flash_attn_unpadded_func is not None
279
+ and not self.is_fp32
280
+ ):
281
+ self.core_attention_flash = FlashSelfAttention(
282
+ causal=True, attention_dropout=config.attn_dropout_prob
283
+ )
284
+ self.bf16 = config.bf16
285
+
286
+ self.use_dynamic_ntk = config.use_dynamic_ntk
287
+ self.use_logn_attn = config.use_logn_attn
288
+
289
+ logn_list = [
290
+ math.log(i, self.seq_length) if i > self.seq_length else 1
291
+ for i in range(1, 32768)
292
+ ]
293
+ logn_tensor = torch.tensor(logn_list)[None, :, None, None]
294
+ self.register_buffer("logn_tensor", logn_tensor, persistent=False)
295
+
296
+ self.attn_dropout = nn.Dropout(config.attn_dropout_prob)
297
+ self.softmax_in_fp32 = config.softmax_in_fp32 if hasattr(config, 'softmax_in_fp32') else False
298
+ self.use_cache_quantization = config.use_cache_quantization if hasattr(config, 'use_cache_quantization') else False
299
+ self.use_cache_kernel = config.use_cache_kernel if hasattr(config,'use_cache_kernel') else False
300
+ cache_dtype = torch.float
301
+ if self.bf16:
302
+ cache_dtype=torch.bfloat16
303
+ elif config.fp16:
304
+ cache_dtype = torch.float16
305
+ self.cache_qmax = torch.tensor(torch.iinfo(torch.uint8).max, dtype=cache_dtype)
306
+ self.cache_qmin = torch.tensor(torch.iinfo(torch.uint8).min, dtype=cache_dtype)
307
+
308
+ if config.use_cache_quantization and config.use_cache_kernel:
309
+ # pre check if the support files existing
310
+ module_root = pathlib.Path(__file__).parent
311
+ src_files = ("cache_autogptq_cuda_256.cpp", "cache_autogptq_cuda_kernel_256.cu")
312
+ if any(not (module_root/src).is_file() for src in src_files):
313
+ warnings.warn("KV cache kernel source files (.cpp and .cu) not found.")
314
+ self.cache_kernels = None
315
+ else:
316
+ try:
317
+ from .cpp_kernels import cache_autogptq_cuda_256
318
+ self.cache_kernels = cache_autogptq_cuda_256
319
+ except ImportError:
320
+ warnings.warn("Failed to import KV cache kernels.")
321
+ self.cache_kernels = None
322
+
323
+ def _attn(self, query, key, value, causal_mask=None, attention_mask=None, head_mask=None):
324
+ device = query.device
325
+ if self.use_cache_quantization:
326
+ qk, qk_scale, qk_zero = key
327
+ if self.use_cache_kernel and self.cache_kernels is not None:
328
+ shape = query.shape[:-1] + (qk.shape[-2],)
329
+ attn_weights = torch.zeros(shape, dtype=torch.float16, device=device)
330
+ self.cache_kernels.vecquant8matmul_batched_faster_old(
331
+ query.contiguous() if query.dtype == torch.float16 else query.to(torch.float16).contiguous(),
332
+ qk.transpose(-1, -2).contiguous(),
333
+ attn_weights,
334
+ qk_scale.contiguous() if qk_scale.dtype == torch.float16 else qk_scale.to(torch.float16).contiguous(),
335
+ qk_zero.contiguous()if qk_zero.dtype == torch.float16 else qk_zero.to(torch.float16).contiguous())
336
+ # attn_weights = attn_weights.to(query.dtype).contiguous()
337
+ else:
338
+ key = dequantize_cache_torch(qk, qk_scale, qk_zero)
339
+ attn_weights = torch.matmul(query, key.transpose(-1, -2))
340
+ else:
341
+ attn_weights = torch.matmul(query, key.transpose(-1, -2))
342
+
343
+ if self.scale_attn_weights:
344
+ if self.use_cache_quantization:
345
+ size_temp = value[0].size(-1)
346
+ else:
347
+ size_temp = value.size(-1)
348
+ attn_weights = attn_weights / (size_temp ** 0.5)
349
+
350
+ mask_value = torch.finfo(attn_weights.dtype).min
351
+ if causal_mask is not None:
352
+ attn_weights = torch.where(
353
+ causal_mask, attn_weights.to(attn_weights.dtype), mask_value
354
+ )
355
+
356
+ if attention_mask is not None:
357
+ attn_weights = attn_weights + attention_mask
358
+
359
+ if self.softmax_in_fp32:
360
+ attn_weights = nn.functional.softmax(attn_weights.float(), dim=-1)
361
+ else:
362
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
363
+
364
+ attn_weights = attn_weights.type(query.dtype)
365
+ attn_weights = self.attn_dropout(attn_weights)
366
+
367
+ if head_mask is not None:
368
+ attn_weights = attn_weights * head_mask
369
+
370
+ if self.use_cache_quantization:
371
+ qv, qv_scale, qv_zero = value
372
+ if self.use_cache_kernel and self.cache_kernels is not None:
373
+ shape = attn_weights.shape[:-1] + (query.shape[-1],)
374
+ attn_output = torch.zeros(shape, dtype=torch.float16, device=device)
375
+ self.cache_kernels.vecquant8matmul_batched_column_compression_faster_old(
376
+ attn_weights.contiguous() if attn_weights.dtype == torch.float16 else attn_weights.to(torch.float16).contiguous(),
377
+ qv.contiguous(), # dtype: int32
378
+ attn_output,
379
+ qv_scale.contiguous() if qv_scale.dtype == torch.float16 else qv_scale.to(torch.float16).contiguous(),
380
+ qv_zero.contiguous() if qv_zero.dtype == torch.float16 else qv_zero.to(torch.float16).contiguous())
381
+ if attn_output.dtype != query.dtype:
382
+ attn_output = attn_output.to(query.dtype)
383
+ attn_weights = attn_weights.to(query.dtype)
384
+ else:
385
+ value = dequantize_cache_torch(qv, qv_scale, qv_zero)
386
+ attn_output = torch.matmul(attn_weights, value)
387
+ else:
388
+ attn_output = torch.matmul(attn_weights, value)
389
+
390
+ attn_output = attn_output.transpose(1, 2)
391
+
392
+ return attn_output, attn_weights
393
+
394
+ def _split_heads(self, tensor, num_heads, attn_head_size):
395
+ new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
396
+ tensor = tensor.view(new_shape)
397
+ return tensor
398
+
399
+ def _merge_heads(self, tensor, num_heads, attn_head_size):
400
+ tensor = tensor.contiguous()
401
+ new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
402
+ return tensor.view(new_shape)
403
+
404
+ def forward(
405
+ self,
406
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
407
+ rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
408
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
409
+ attention_mask: Optional[torch.FloatTensor] = None,
410
+ head_mask: Optional[torch.FloatTensor] = None,
411
+ encoder_hidden_states: Optional[torch.Tensor] = None,
412
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
413
+ output_attentions: Optional[bool] = False,
414
+ use_cache: Optional[bool] = False,
415
+ ):
416
+ mixed_x_layer = self.c_attn(hidden_states)
417
+
418
+ query, key, value = mixed_x_layer.split(self.split_size, dim=2)
419
+
420
+ query = self._split_heads(query, self.num_heads, self.head_dim)
421
+ key = self._split_heads(key, self.num_heads, self.head_dim)
422
+ value = self._split_heads(value, self.num_heads, self.head_dim)
423
+
424
+ if rotary_pos_emb_list is not None:
425
+ cur_len = query.shape[1]
426
+ if len(rotary_pos_emb_list) == 1:
427
+ rotary_pos_emb = rotary_pos_emb_list[0]
428
+ rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
429
+ rotary_pos_emb = (rotary_pos_emb,) * 2
430
+ q_pos_emb, k_pos_emb = rotary_pos_emb
431
+ # Slice the pos emb for current inference
432
+ query = apply_rotary_pos_emb(query, q_pos_emb)
433
+ key = apply_rotary_pos_emb(key, k_pos_emb)
434
+ else:
435
+ query_list = []
436
+ key_list = []
437
+ for i, rotary_pos_emb in enumerate(rotary_pos_emb_list):
438
+ rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
439
+ rotary_pos_emb = (rotary_pos_emb,) * 2
440
+ q_pos_emb, k_pos_emb = rotary_pos_emb
441
+ # Slice the pos emb for current inference
442
+ query_list += [apply_rotary_pos_emb(query[i:i+1, :, :], q_pos_emb)]
443
+ key_list += [apply_rotary_pos_emb(key[i:i+1, :, :], k_pos_emb)]
444
+ query = torch.cat(query_list, dim=0)
445
+ key = torch.cat(key_list, dim=0)
446
+
447
+ if self.use_cache_quantization:
448
+ key = quantize_cache_v(key.permute(0, 2, 1, 3),
449
+ bits=8,
450
+ qmin=self.cache_qmin,
451
+ qmax=self.cache_qmax)
452
+ value = quantize_cache_v(value.permute(0, 2, 1, 3),
453
+ bits=8,
454
+ qmin=self.cache_qmin,
455
+ qmax=self.cache_qmax)
456
+
457
+
458
+ if layer_past is not None:
459
+ past_key, past_value = layer_past[0], layer_past[1]
460
+ if self.use_cache_quantization:
461
+ # use_cache_quantization:
462
+ # present=((q_key,key_scale,key_zero_point),
463
+ # (q_value,value_scale,value_zero_point))
464
+ key = (torch.cat((past_key[0], key[0]), dim=2),
465
+ torch.cat((past_key[1], key[1]), dim=2),
466
+ torch.cat((past_key[2], key[2]), dim=2))
467
+ value = (torch.cat((past_value[0], value[0]), dim=2),
468
+ torch.cat((past_value[1], value[1]), dim=2),
469
+ torch.cat((past_value[2], value[2]), dim=2))
470
+ else:
471
+ # not use_cache_quantization:
472
+ # present=(key,value)
473
+ key = torch.cat((past_key, key), dim=1)
474
+ value = torch.cat((past_value, value), dim=1)
475
+
476
+ if use_cache:
477
+ present = (key, value)
478
+ else:
479
+ present = None
480
+
481
+ key_size = key[0].size(2) if self.use_cache_quantization else key.size(1)
482
+ if key_size > self.seq_length and self.use_logn_attn and not self.training:
483
+ if self.use_cache_quantization:
484
+ seq_start = key[0].size(2) - query.size(1)
485
+ seq_end = key[0].size(2)
486
+ else:
487
+ seq_start = key.size(1) - query.size(1)
488
+ seq_end = key.size(1)
489
+ logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :].type_as(query)
490
+ query = query * logn_tensor.expand_as(query)
491
+
492
+ if (
493
+ self.use_flash_attn
494
+ and flash_attn_unpadded_func is not None
495
+ and not self.is_fp32
496
+ and query.is_cuda
497
+ ):
498
+ q, k, v = query, key, value
499
+ attn_output = self.core_attention_flash(q, k, v, attention_mask=attention_mask)
500
+ else:
501
+ key_size = key[0].size(2) if self.use_cache_quantization else key.size(1)
502
+ if query.size(1) == key_size:
503
+ causal_mask = torch.tril(
504
+ torch.ones((key_size, key_size), dtype=torch.bool, device=query.device)
505
+ ).view(1, 1, key_size, key_size)
506
+ else:
507
+ causal_mask = None
508
+ query = query.permute(0, 2, 1, 3)
509
+ if not self.use_cache_quantization:
510
+ key = key.permute(0, 2, 1, 3)
511
+ value = value.permute(0, 2, 1, 3)
512
+ if (
513
+ causal_mask is None
514
+ and self.use_flash_attn
515
+ and flash_attn_unpadded_func is not None
516
+ and not self.is_fp32
517
+ and not query.is_cuda
518
+ ):
519
+ raise Exception(_ERROR_INPUT_CPU_QUERY_WITH_FLASH_ATTN_ACTIVATED)
520
+
521
+ if not self.use_cache_quantization and SUPPORT_TORCH2:
522
+ if attention_mask is not None:
523
+ attention_mask = attention_mask.expand(-1, -1, query.size(2), -1)
524
+ if causal_mask is not None:
525
+ attention_mask = attention_mask.masked_fill(~causal_mask, torch.finfo(query.dtype).min)
526
+ else:
527
+ attention_mask = causal_mask
528
+ attn_output = F.scaled_dot_product_attention(
529
+ query, key, value, attn_mask=attention_mask
530
+ ).transpose(1, 2)
531
+ attn_weight = None
532
+ else:
533
+ attn_output, attn_weight = self._attn(
534
+ query, key, value, causal_mask, attention_mask, head_mask
535
+ )
536
+ context_layer = self._merge_heads(
537
+ attn_output, self.num_heads, self.head_dim
538
+ )
539
+
540
+ attn_output = self.c_proj(context_layer)
541
+
542
+ outputs = (attn_output, present)
543
+ if output_attentions:
544
+ if (
545
+ self.use_flash_attn
546
+ and flash_attn_unpadded_func is not None
547
+ and not self.is_fp32
548
+ ):
549
+ raise ValueError("Cannot output attentions while using flash-attn")
550
+ elif not self.use_cache_quantization and SUPPORT_TORCH2:
551
+ raise ValueError("Cannot output attentions while using scaled_dot_product_attention")
552
+ else:
553
+ outputs += (attn_weight,)
554
+
555
+ return outputs
556
+
557
+
558
+ class QWenMLP(nn.Module):
559
+ def __init__(self, config):
560
+ super().__init__()
561
+ self.w1 = nn.Linear(
562
+ config.hidden_size, config.intermediate_size // 2, bias=not config.no_bias
563
+ )
564
+ self.w2 = nn.Linear(
565
+ config.hidden_size, config.intermediate_size // 2, bias=not config.no_bias
566
+ )
567
+ ff_dim_in = config.intermediate_size // 2
568
+ self.c_proj = nn.Linear(ff_dim_in, config.hidden_size, bias=not config.no_bias)
569
+
570
+ def forward(self, hidden_states):
571
+ a1 = self.w1(hidden_states)
572
+ a2 = self.w2(hidden_states)
573
+ intermediate_parallel = a1 * F.silu(a2)
574
+ output = self.c_proj(intermediate_parallel)
575
+ return output
576
+
577
+
578
+ class QWenBlock(nn.Module):
579
+ def __init__(self, config):
580
+ super().__init__()
581
+ hidden_size = config.hidden_size
582
+ self.bf16 = config.bf16
583
+
584
+ self.ln_1 = RMSNorm(
585
+ hidden_size,
586
+ eps=config.layer_norm_epsilon,
587
+ )
588
+ self.attn = QWenAttention(config)
589
+ self.ln_2 = RMSNorm(
590
+ hidden_size,
591
+ eps=config.layer_norm_epsilon,
592
+ )
593
+
594
+ self.mlp = QWenMLP(config)
595
+
596
+ def forward(
597
+ self,
598
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
599
+ rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
600
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
601
+ attention_mask: Optional[torch.FloatTensor] = None,
602
+ head_mask: Optional[torch.FloatTensor] = None,
603
+ encoder_hidden_states: Optional[torch.Tensor] = None,
604
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
605
+ use_cache: Optional[bool] = False,
606
+ output_attentions: Optional[bool] = False,
607
+ ):
608
+ layernorm_output = self.ln_1(hidden_states)
609
+
610
+ attn_outputs = self.attn(
611
+ layernorm_output,
612
+ rotary_pos_emb_list,
613
+ layer_past=layer_past,
614
+ attention_mask=attention_mask,
615
+ head_mask=head_mask,
616
+ use_cache=use_cache,
617
+ output_attentions=output_attentions,
618
+ )
619
+ attn_output = attn_outputs[0]
620
+
621
+ outputs = attn_outputs[1:]
622
+
623
+ residual = hidden_states
624
+ layernorm_input = attn_output + residual
625
+
626
+ layernorm_output = self.ln_2(layernorm_input)
627
+
628
+ residual = layernorm_input
629
+ mlp_output = self.mlp(layernorm_output)
630
+ hidden_states = residual + mlp_output
631
+
632
+ if use_cache:
633
+ outputs = (hidden_states,) + outputs
634
+ else:
635
+ outputs = (hidden_states,) + outputs[1:]
636
+
637
+ return outputs
638
+
639
+
640
+ class QWenPreTrainedModel(PreTrainedModel):
641
+ config_class = QWenConfig
642
+ base_model_prefix = "transformer"
643
+ is_parallelizable = False
644
+ supports_gradient_checkpointing = True
645
+ _no_split_modules = ["QWenBlock"]
646
+ _skip_keys_device_placement = "past_key_values"
647
+
648
+ def __init__(self, *inputs, **kwargs):
649
+ super().__init__(*inputs, **kwargs)
650
+
651
+ def _init_weights(self, module):
652
+ """Initialize the weights."""
653
+ if isinstance(module, nn.Linear):
654
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
655
+ if module.bias is not None:
656
+ module.bias.data.zero_()
657
+ elif isinstance(module, nn.Embedding):
658
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
659
+ if module.padding_idx is not None:
660
+ module.weight.data[module.padding_idx].zero_()
661
+ elif isinstance(module, RMSNorm):
662
+ module.weight.data.fill_(1.0)
663
+
664
+ for name, p in module.named_parameters():
665
+ if name == "c_proj.weight":
666
+ p.data.normal_(
667
+ mean=0.0,
668
+ std=(
669
+ self.config.initializer_range
670
+ / math.sqrt(2 * self.config.num_hidden_layers)
671
+ ),
672
+ )
673
+
674
+ def _set_gradient_checkpointing(self, module, value=False):
675
+ if isinstance(module, QWenModel):
676
+ module.gradient_checkpointing = value
677
+
678
+
679
+ class QWenModel(QWenPreTrainedModel):
680
+ _keys_to_ignore_on_load_missing = ["attn.masked_bias"]
681
+
682
+ def __init__(self, config):
683
+ super().__init__(config)
684
+ self.vocab_size = config.vocab_size
685
+ self.num_hidden_layers = config.num_hidden_layers
686
+ self.embed_dim = config.hidden_size
687
+ self.use_cache_quantization = self.config.use_cache_quantization if hasattr(self.config, 'use_cache_quantization') else False
688
+
689
+ self.gradient_checkpointing = False
690
+ self.use_dynamic_ntk = config.use_dynamic_ntk
691
+ self.seq_length = config.seq_length
692
+
693
+ self.wte = nn.Embedding(self.vocab_size, self.embed_dim)
694
+
695
+ self.drop = nn.Dropout(config.emb_dropout_prob)
696
+
697
+ if config.rotary_pct == 1.0:
698
+ self.rotary_ndims = None
699
+ else:
700
+ assert config.rotary_pct < 1
701
+ self.rotary_ndims = int(
702
+ config.kv_channels * config.rotary_pct
703
+ )
704
+ dim = (
705
+ self.rotary_ndims
706
+ if self.rotary_ndims is not None
707
+ else config.kv_channels
708
+ )
709
+ self.rotary_emb = RotaryEmbedding(dim, base=config.rotary_emb_base)
710
+
711
+ self.use_flash_attn = config.use_flash_attn
712
+ self.is_fp32 = not (config.bf16 or config.fp16)
713
+
714
+ self.h = nn.ModuleList(
715
+ [
716
+ QWenBlock(
717
+ config
718
+ )
719
+ for i in range(config.num_hidden_layers)
720
+ ]
721
+ )
722
+ self.ln_f = RMSNorm(
723
+ self.embed_dim,
724
+ eps=config.layer_norm_epsilon,
725
+ )
726
+
727
+ self.post_init()
728
+
729
+ def get_input_embeddings(self):
730
+ return self.wte
731
+
732
+ def set_input_embeddings(self, new_embeddings):
733
+ self.wte = new_embeddings
734
+
735
+ def get_ntk_alpha(self, true_seq_len):
736
+ context_value = math.log(true_seq_len / self.seq_length, 2) + 1
737
+ ntk_alpha = 2 ** math.ceil(context_value) - 1
738
+ ntk_alpha = max(ntk_alpha, 1)
739
+ return ntk_alpha
740
+
741
+ def forward(
742
+ self,
743
+ input_ids: Optional[torch.LongTensor] = None,
744
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
745
+ attention_mask: Optional[torch.FloatTensor] = None,
746
+ token_type_ids: Optional[torch.LongTensor] = None,
747
+ position_ids: Optional[torch.LongTensor] = None,
748
+ head_mask: Optional[torch.FloatTensor] = None,
749
+ inputs_embeds: Optional[torch.FloatTensor] = None,
750
+ encoder_hidden_states: Optional[torch.Tensor] = None,
751
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
752
+ use_cache: Optional[bool] = None,
753
+ output_attentions: Optional[bool] = None,
754
+ output_hidden_states: Optional[bool] = None,
755
+ return_dict: Optional[bool] = None,
756
+ ):
757
+ output_attentions = (
758
+ output_attentions
759
+ if output_attentions is not None
760
+ else self.config.output_attentions
761
+ )
762
+ output_hidden_states = (
763
+ output_hidden_states
764
+ if output_hidden_states is not None
765
+ else self.config.output_hidden_states
766
+ )
767
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
768
+ return_dict = (
769
+ return_dict if return_dict is not None else self.config.use_return_dict
770
+ )
771
+
772
+ if input_ids is not None and inputs_embeds is not None:
773
+ raise ValueError(
774
+ "You cannot specify both input_ids and inputs_embeds at the same time"
775
+ )
776
+ elif input_ids is not None:
777
+ input_shape = input_ids.size()
778
+ input_ids = input_ids.view(-1, input_shape[-1])
779
+ batch_size = input_ids.shape[0]
780
+ elif inputs_embeds is not None:
781
+ input_shape = inputs_embeds.size()[:-1]
782
+ batch_size = inputs_embeds.shape[0]
783
+ else:
784
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
785
+
786
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
787
+
788
+ if token_type_ids is not None:
789
+ token_type_ids = token_type_ids.view(-1, input_shape[-1])
790
+ if position_ids is not None:
791
+ position_ids = position_ids.view(-1, input_shape[-1])
792
+
793
+ if past_key_values is None:
794
+ past_length = 0
795
+ past_key_values = tuple([None] * len(self.h))
796
+ else:
797
+ if self.use_cache_quantization:
798
+ past_length = past_key_values[0][0][0].size(2)
799
+ else:
800
+ past_length = past_key_values[0][0].size(-2)
801
+ if position_ids is None:
802
+ position_ids = torch.arange(
803
+ past_length,
804
+ input_shape[-1] + past_length,
805
+ dtype=torch.long,
806
+ device=device,
807
+ )
808
+ position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
809
+
810
+ if attention_mask is not None:
811
+ if batch_size <= 0:
812
+ raise ValueError("batch_size has to be defined and > 0")
813
+ attention_mask = attention_mask.view(batch_size, -1)
814
+ attention_mask = attention_mask[:, None, None, :]
815
+ attention_mask = attention_mask.to(dtype=self.dtype)
816
+ attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
817
+
818
+ encoder_attention_mask = None
819
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
820
+
821
+ if inputs_embeds is None:
822
+ inputs_embeds = self.wte(input_ids)
823
+ hidden_states = inputs_embeds
824
+
825
+ kv_seq_len = hidden_states.size()[1]
826
+ if past_key_values[0] is not None:
827
+ # past key values[0][0] shape: bs * seq_len * head_num * dim
828
+ if self.use_cache_quantization:
829
+ kv_seq_len += past_key_values[0][0][0].shape[2]
830
+ else:
831
+ kv_seq_len += past_key_values[0][0].shape[1]
832
+
833
+ if self.training or not self.use_dynamic_ntk:
834
+ ntk_alpha_list = [1.0]
835
+ elif kv_seq_len != hidden_states.size()[1]:
836
+ ntk_alpha_list = self.rotary_emb._ntk_alpha_cached_list
837
+ else:
838
+ ntk_alpha_list = []
839
+ if attention_mask is not None and kv_seq_len > self.seq_length:
840
+ true_seq_lens = attention_mask.squeeze(1).squeeze(1).eq(0).sum(dim=-1, dtype=torch.int32)
841
+ for i in range(hidden_states.size()[0]):
842
+ true_seq_len = true_seq_lens[i].item()
843
+ ntk_alpha = self.get_ntk_alpha(true_seq_len)
844
+ ntk_alpha_list.append(ntk_alpha)
845
+ else:
846
+ ntk_alpha = self.get_ntk_alpha(kv_seq_len)
847
+ ntk_alpha_list.append(ntk_alpha)
848
+ self.rotary_emb._ntk_alpha_cached_list = ntk_alpha_list
849
+ rotary_pos_emb_list = [
850
+ self.rotary_emb(kv_seq_len, ntk_alpha=ntk_alpha) for ntk_alpha in ntk_alpha_list
851
+ ]
852
+
853
+ hidden_states = self.drop(hidden_states)
854
+ output_shape = input_shape + (hidden_states.size(-1),)
855
+
856
+ if self.gradient_checkpointing and self.training:
857
+ if use_cache:
858
+ logger.warning_once(
859
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
860
+ )
861
+ use_cache = False
862
+
863
+ presents = () if use_cache else None
864
+ all_self_attentions = () if output_attentions else None
865
+ all_hidden_states = () if output_hidden_states else None
866
+ for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
867
+
868
+ if output_hidden_states:
869
+ all_hidden_states = all_hidden_states + (hidden_states,)
870
+
871
+ if self.gradient_checkpointing and self.training:
872
+
873
+ def create_custom_forward(module):
874
+ def custom_forward(*inputs):
875
+ # None for past_key_value
876
+ return module(*inputs, use_cache, output_attentions)
877
+
878
+ return custom_forward
879
+
880
+ outputs = torch.utils.checkpoint.checkpoint(
881
+ create_custom_forward(block),
882
+ hidden_states,
883
+ rotary_pos_emb_list,
884
+ None,
885
+ attention_mask,
886
+ head_mask[i],
887
+ encoder_hidden_states,
888
+ encoder_attention_mask,
889
+ )
890
+ else:
891
+ outputs = block(
892
+ hidden_states,
893
+ layer_past=layer_past,
894
+ rotary_pos_emb_list=rotary_pos_emb_list,
895
+ attention_mask=attention_mask,
896
+ head_mask=head_mask[i],
897
+ encoder_hidden_states=encoder_hidden_states,
898
+ encoder_attention_mask=encoder_attention_mask,
899
+ use_cache=use_cache,
900
+ output_attentions=output_attentions,
901
+ )
902
+
903
+ hidden_states = outputs[0]
904
+ if use_cache is True:
905
+ presents = presents + (outputs[1],)
906
+
907
+ if output_attentions:
908
+ all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
909
+
910
+ hidden_states = self.ln_f(hidden_states)
911
+ hidden_states = hidden_states.view(output_shape)
912
+ # Add last hidden state
913
+ if output_hidden_states:
914
+ all_hidden_states = all_hidden_states + (hidden_states,)
915
+
916
+ if not return_dict:
917
+ return tuple(
918
+ v for v in [hidden_states, presents, all_hidden_states] if v is not None
919
+ )
920
+
921
+ return BaseModelOutputWithPast(
922
+ last_hidden_state=hidden_states,
923
+ past_key_values=presents,
924
+ hidden_states=all_hidden_states,
925
+ attentions=all_self_attentions,
926
+ )
927
+
928
+
929
+ class QWenLMHeadModel(QWenPreTrainedModel):
930
+ _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.rotary_emb\.inv_freq"]
931
+ _keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.masked_bias"]
932
+
933
+ def __init__(self, config):
934
+ super().__init__(config)
935
+ assert (
936
+ config.bf16 + config.fp16 + config.fp32 <= 1
937
+ ), "Only one of \"bf16\", \"fp16\", \"fp32\" can be true"
938
+
939
+ autoset_precision = config.bf16 + config.fp16 + config.fp32 == 0
940
+
941
+ if autoset_precision:
942
+ if SUPPORT_BF16:
943
+ logger.warn(
944
+ "The model is automatically converting to bf16 for faster inference. "
945
+ "If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to \"AutoModelForCausalLM.from_pretrained\"."
946
+ )
947
+ config.bf16 = True
948
+ elif SUPPORT_FP16:
949
+ logger.warn(
950
+ "The model is automatically converting to fp16 for faster inference. "
951
+ "If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to \"AutoModelForCausalLM.from_pretrained\"."
952
+ )
953
+ config.fp16 = True
954
+ else:
955
+ config.fp32 = True
956
+
957
+ if config.bf16 and SUPPORT_CUDA and not SUPPORT_BF16:
958
+ logger.warn("Your device does NOT seem to support bf16, you can switch to fp16 or fp32 by by passing fp16/fp32=True in \"AutoModelForCausalLM.from_pretrained\".")
959
+ if config.fp16 and SUPPORT_CUDA and not SUPPORT_FP16:
960
+ logger.warn("Your device does NOT support faster inference with fp16, please switch to fp32 which is likely to be faster")
961
+ if config.fp32:
962
+ if SUPPORT_BF16:
963
+ logger.warn("Your device support faster inference by passing bf16=True in \"AutoModelForCausalLM.from_pretrained\".")
964
+ elif SUPPORT_FP16:
965
+ logger.warn("Your device support faster inference by passing fp16=True in \"AutoModelForCausalLM.from_pretrained\".")
966
+
967
+ if config.use_flash_attn == "auto":
968
+ if config.bf16 or config.fp16:
969
+ logger.warn("Try importing flash-attention for faster inference...")
970
+ config.use_flash_attn = True
971
+ else:
972
+ config.use_flash_attn = False
973
+ if config.use_flash_attn and config.fp32:
974
+ logger.warn("Flash attention will be disabled because it does NOT support fp32.")
975
+
976
+ if config.use_flash_attn:
977
+ _import_flash_attn()
978
+
979
+ self.transformer = QWenModel(config)
980
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
981
+
982
+ if config.bf16:
983
+ self.transformer.bfloat16()
984
+ self.lm_head.bfloat16()
985
+ if config.fp16:
986
+ self.transformer.half()
987
+ self.lm_head.half()
988
+ self.post_init()
989
+
990
+ def get_output_embeddings(self):
991
+ return self.lm_head
992
+
993
+ def set_output_embeddings(self, new_embeddings):
994
+ self.lm_head = new_embeddings
995
+
996
+ def prepare_inputs_for_generation(
997
+ self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
998
+ ):
999
+ if past_key_values:
1000
+ input_ids = input_ids[:, -1].unsqueeze(-1)
1001
+
1002
+ if input_ids.size(0) == 1:
1003
+ attention_mask = None
1004
+ else:
1005
+ attention_mask = kwargs.get("attention_mask", None)
1006
+
1007
+ if inputs_embeds is not None and past_key_values is None:
1008
+ model_inputs = {"inputs_embeds": inputs_embeds}
1009
+ else:
1010
+ model_inputs = {"input_ids": input_ids}
1011
+
1012
+ model_inputs.update(
1013
+ {
1014
+ "past_key_values": past_key_values,
1015
+ "use_cache": kwargs.get("use_cache"),
1016
+ "attention_mask": attention_mask,
1017
+ }
1018
+ )
1019
+ return model_inputs
1020
+
1021
+ def forward(
1022
+ self,
1023
+ input_ids: Optional[torch.LongTensor] = None,
1024
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
1025
+ attention_mask: Optional[torch.FloatTensor] = None,
1026
+ token_type_ids: Optional[torch.LongTensor] = None,
1027
+ position_ids: Optional[torch.LongTensor] = None,
1028
+ head_mask: Optional[torch.FloatTensor] = None,
1029
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1030
+ encoder_hidden_states: Optional[torch.Tensor] = None,
1031
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
1032
+ labels: Optional[torch.LongTensor] = None,
1033
+ use_cache: Optional[bool] = None,
1034
+ output_attentions: Optional[bool] = None,
1035
+ output_hidden_states: Optional[bool] = None,
1036
+ return_dict: Optional[bool] = None,
1037
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1038
+
1039
+ return_dict = (
1040
+ return_dict if return_dict is not None else self.config.use_return_dict
1041
+ )
1042
+
1043
+ transformer_outputs = self.transformer(
1044
+ input_ids,
1045
+ past_key_values=past_key_values,
1046
+ attention_mask=attention_mask,
1047
+ token_type_ids=token_type_ids,
1048
+ position_ids=position_ids,
1049
+ head_mask=head_mask,
1050
+ inputs_embeds=inputs_embeds,
1051
+ encoder_hidden_states=encoder_hidden_states,
1052
+ encoder_attention_mask=encoder_attention_mask,
1053
+ use_cache=use_cache,
1054
+ output_attentions=output_attentions,
1055
+ output_hidden_states=output_hidden_states,
1056
+ return_dict=return_dict,
1057
+ )
1058
+ hidden_states = transformer_outputs[0]
1059
+
1060
+ lm_logits = self.lm_head(hidden_states)
1061
+
1062
+ loss = None
1063
+ if labels is not None:
1064
+ labels = labels.to(lm_logits.device)
1065
+ shift_logits = lm_logits[..., :-1, :].contiguous()
1066
+ shift_labels = labels[..., 1:].contiguous()
1067
+ loss_fct = CrossEntropyLoss()
1068
+ loss = loss_fct(
1069
+ shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
1070
+ )
1071
+
1072
+ if not return_dict:
1073
+ output = (lm_logits,) + transformer_outputs[1:]
1074
+ return ((loss,) + output) if loss is not None else output
1075
+
1076
+ return CausalLMOutputWithPast(
1077
+ loss=loss,
1078
+ logits=lm_logits,
1079
+ past_key_values=transformer_outputs.past_key_values,
1080
+ hidden_states=transformer_outputs.hidden_states,
1081
+ attentions=transformer_outputs.attentions,
1082
+ )
1083
+
1084
+ @staticmethod
1085
+ def _reorder_cache(
1086
+ past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
1087
+ ) -> Tuple[Tuple[torch.Tensor]]:
1088
+
1089
+ return tuple(
1090
+ tuple(
1091
+ past_state.index_select(0, beam_idx.to(past_state.device))
1092
+ for past_state in layer_past
1093
+ )
1094
+ for layer_past in past_key_values
1095
+ )
1096
+
1097
+ def chat(
1098
+ self,
1099
+ tokenizer: PreTrainedTokenizer,
1100
+ query: str,
1101
+ history: Optional[HistoryType],
1102
+ system: str = "You are a helpful assistant.",
1103
+ stream: Optional[bool] = _SENTINEL,
1104
+ stop_words_ids: Optional[List[List[int]]] = None,
1105
+ generation_config: Optional[GenerationConfig] = None,
1106
+ **kwargs,
1107
+ ) -> Tuple[str, HistoryType]:
1108
+ generation_config = generation_config if generation_config is not None else self.generation_config
1109
+
1110
+ assert stream is _SENTINEL, _ERROR_STREAM_IN_CHAT
1111
+ assert generation_config.chat_format == 'chatml', _ERROR_BAD_CHAT_FORMAT
1112
+ if history is None:
1113
+ history = []
1114
+ else:
1115
+ # make a copy of the user's input such that is is left untouched
1116
+ history = copy.deepcopy(history)
1117
+
1118
+ if stop_words_ids is None:
1119
+ stop_words_ids = []
1120
+
1121
+ max_window_size = kwargs.get('max_window_size', None)
1122
+ if max_window_size is None:
1123
+ max_window_size = generation_config.max_window_size
1124
+ raw_text, context_tokens = make_context(
1125
+ tokenizer,
1126
+ query,
1127
+ history=history,
1128
+ system=system,
1129
+ max_window_size=max_window_size,
1130
+ chat_format=generation_config.chat_format,
1131
+ )
1132
+
1133
+ stop_words_ids.extend(get_stop_words_ids(
1134
+ generation_config.chat_format, tokenizer
1135
+ ))
1136
+ input_ids = torch.tensor([context_tokens]).to(self.device)
1137
+ outputs = self.generate(
1138
+ input_ids,
1139
+ stop_words_ids=stop_words_ids,
1140
+ return_dict_in_generate=False,
1141
+ generation_config=generation_config,
1142
+ **kwargs,
1143
+ )
1144
+
1145
+ response = decode_tokens(
1146
+ outputs[0],
1147
+ tokenizer,
1148
+ raw_text_len=len(raw_text),
1149
+ context_length=len(context_tokens),
1150
+ chat_format=generation_config.chat_format,
1151
+ verbose=False,
1152
+ errors='replace'
1153
+ )
1154
+
1155
+ # as history is a copy of the user inputs,
1156
+ # we can always return the new turn to the user.
1157
+ # separating input history and output history also enables the user
1158
+ # to implement more complex history management
1159
+ history.append((query, response))
1160
+
1161
+ return response, history
1162
+
1163
+ def chat_stream(
1164
+ self,
1165
+ tokenizer: PreTrainedTokenizer,
1166
+ query: str,
1167
+ history: Optional[HistoryType],
1168
+ system: str = "You are a helpful assistant.",
1169
+ stop_words_ids: Optional[List[List[int]]] = None,
1170
+ logits_processor: Optional[LogitsProcessorList] = None,
1171
+ generation_config: Optional[GenerationConfig] = None,
1172
+ **kwargs,
1173
+ ) -> Generator[str, Any, None]:
1174
+ generation_config = generation_config if generation_config is not None else self.generation_config
1175
+ assert generation_config.chat_format == 'chatml', _ERROR_BAD_CHAT_FORMAT
1176
+ if history is None:
1177
+ history = []
1178
+ if stop_words_ids is None:
1179
+ stop_words_ids = []
1180
+
1181
+ max_window_size = kwargs.get('max_window_size', None)
1182
+ if max_window_size is None:
1183
+ max_window_size = generation_config.max_window_size
1184
+ raw_text, context_tokens = make_context(
1185
+ tokenizer,
1186
+ query,
1187
+ history=history,
1188
+ system=system,
1189
+ max_window_size=max_window_size,
1190
+ chat_format=generation_config.chat_format,
1191
+ )
1192
+
1193
+ stop_words_ids.extend(get_stop_words_ids(
1194
+ generation_config.chat_format, tokenizer
1195
+ ))
1196
+ if stop_words_ids is not None:
1197
+ stop_words_logits_processor = StopWordsLogitsProcessor(
1198
+ stop_words_ids=stop_words_ids,
1199
+ eos_token_id=generation_config.eos_token_id,
1200
+ )
1201
+ if logits_processor is None:
1202
+ logits_processor = LogitsProcessorList([stop_words_logits_processor])
1203
+ else:
1204
+ logits_processor.append(stop_words_logits_processor)
1205
+ input_ids = torch.tensor([context_tokens]).to(self.device)
1206
+
1207
+ from transformers_stream_generator.main import NewGenerationMixin, StreamGenerationConfig
1208
+ self.__class__.generate_stream = NewGenerationMixin.generate
1209
+ self.__class__.sample_stream = NewGenerationMixin.sample_stream
1210
+ stream_config = StreamGenerationConfig(**generation_config.to_dict(), do_stream=True)
1211
+
1212
+ def stream_generator():
1213
+ outputs = []
1214
+ for token in self.generate_stream(
1215
+ input_ids,
1216
+ return_dict_in_generate=False,
1217
+ generation_config=stream_config,
1218
+ logits_processor=logits_processor,
1219
+ seed=-1,
1220
+ **kwargs):
1221
+ outputs.append(token.item())
1222
+ yield tokenizer.decode(outputs, skip_special_tokens=True, errors='ignore')
1223
+
1224
+ return stream_generator()
1225
+
1226
+ def generate(
1227
+ self,
1228
+ inputs: Optional[torch.Tensor] = None,
1229
+ generation_config: Optional[GenerationConfig] = None,
1230
+ logits_processor: Optional[LogitsProcessorList] = None,
1231
+ stopping_criteria: Optional[StoppingCriteriaList] = None,
1232
+ prefix_allowed_tokens_fn: Optional[
1233
+ Callable[[int, torch.Tensor], List[int]]
1234
+ ] = None,
1235
+ synced_gpus: Optional[bool] = None,
1236
+ assistant_model: Optional["PreTrainedModel"] = None,
1237
+ streamer: Optional["BaseStreamer"] = None,
1238
+ **kwargs,
1239
+ ) -> Union[GenerateOutput, torch.LongTensor]:
1240
+ generation_config = generation_config if generation_config is not None else self.generation_config
1241
+
1242
+ # Process stop_words_ids.
1243
+ stop_words_ids = kwargs.pop("stop_words_ids", None)
1244
+ if stop_words_ids is None and generation_config is not None:
1245
+ stop_words_ids = getattr(generation_config, "stop_words_ids", None)
1246
+ if stop_words_ids is None:
1247
+ stop_words_ids = getattr(generation_config, "stop_words_ids", None)
1248
+
1249
+ if stop_words_ids is not None:
1250
+ stop_words_logits_processor = StopWordsLogitsProcessor(
1251
+ stop_words_ids=stop_words_ids,
1252
+ eos_token_id=generation_config.eos_token_id,
1253
+ )
1254
+ if logits_processor is None:
1255
+ logits_processor = LogitsProcessorList([stop_words_logits_processor])
1256
+ else:
1257
+ logits_processor.append(stop_words_logits_processor)
1258
+
1259
+ return super().generate(
1260
+ inputs,
1261
+ generation_config=generation_config,
1262
+ logits_processor=logits_processor,
1263
+ stopping_criteria=stopping_criteria,
1264
+ prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
1265
+ synced_gpus=synced_gpus,
1266
+ assistant_model=assistant_model,
1267
+ streamer=streamer,
1268
+ **kwargs,
1269
+ )
1270
+
1271
+
1272
+ class RotaryEmbedding(torch.nn.Module):
1273
+ def __init__(self, dim, base=10000):
1274
+ super().__init__()
1275
+ self.dim = dim
1276
+ self.base = base
1277
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
1278
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
1279
+ if importlib.util.find_spec("einops") is None:
1280
+ raise RuntimeError("einops is required for Rotary Embedding")
1281
+
1282
+ self._rotary_pos_emb_cache = None
1283
+ self._seq_len_cached = 0
1284
+ self._ntk_alpha_cached = 1.0
1285
+ self._ntk_alpha_cached_list = [1.0]
1286
+
1287
+ def update_rotary_pos_emb_cache(self, seqlen, ntk_alpha=1.0):
1288
+ if seqlen > self._seq_len_cached or ntk_alpha != self._ntk_alpha_cached:
1289
+ base = self.base * ntk_alpha ** (self.dim / (self.dim - 2))
1290
+ self.inv_freq = 1.0 / (
1291
+ base
1292
+ ** (
1293
+ torch.arange(0, self.dim, 2, device=self.inv_freq.device).float()
1294
+ / self.dim
1295
+ )
1296
+ )
1297
+ self._seq_len_cached = max(2 * seqlen, 16)
1298
+ self._ntk_alpha_cached = ntk_alpha
1299
+ seq = torch.arange(self._seq_len_cached, device=self.inv_freq.device)
1300
+ freqs = torch.outer(seq.type_as(self.inv_freq), self.inv_freq)
1301
+
1302
+ emb = torch.cat((freqs, freqs), dim=-1)
1303
+ from einops import rearrange
1304
+
1305
+ emb = rearrange(emb, "n d -> 1 n 1 d")
1306
+
1307
+ cos, sin = emb.cos(), emb.sin()
1308
+ self._rotary_pos_emb_cache = [cos, sin]
1309
+
1310
+ def forward(self, max_seq_len, ntk_alpha=1.0):
1311
+ self.update_rotary_pos_emb_cache(max_seq_len, ntk_alpha)
1312
+ cos, sin = self._rotary_pos_emb_cache
1313
+ return [cos[:, :max_seq_len], sin[:, :max_seq_len]]
1314
+
1315
+
1316
+ def _rotate_half(x):
1317
+ from einops import rearrange
1318
+
1319
+ x = rearrange(x, "... (j d) -> ... j d", j=2)
1320
+ x1, x2 = x.unbind(dim=-2)
1321
+ return torch.cat((-x2, x1), dim=-1)
1322
+
1323
+
1324
+ def apply_rotary_pos_emb(t, freqs):
1325
+ """ Apply rotary embedding to the first rotary_dim of the iput
1326
+
1327
+ Arguments:
1328
+ t (tensor(batch_size, seq_len, n_head, head_dim)):
1329
+ the input embedding/hidden states
1330
+ freqs (list[tensor(1, seq_len, 1, rotary_dim), tensor(1, seq_len, 1, rotary_dim)]):
1331
+ the cached cos/sin position embeddings
1332
+ """
1333
+ rot_dim = freqs[0].shape[-1]
1334
+ cos, sin = freqs
1335
+ t_float = t.float()
1336
+ if apply_rotary_emb_func is not None and t.is_cuda:
1337
+ # apply_rotary_emb in flash_attn requires cos/sin to be of
1338
+ # shape (seqlen, rotary_dim / 2) and apply rotary embedding
1339
+ # to the first rotary_dim of the input
1340
+ cos = cos.squeeze(0).squeeze(1)[:, : rot_dim // 2]
1341
+ sin = sin.squeeze(0).squeeze(1)[:, : rot_dim // 2]
1342
+ return apply_rotary_emb_func(t_float, cos, sin).type_as(t)
1343
+ else:
1344
+ t_rot, t_pass = t_float[..., :rot_dim], t_float[..., rot_dim:]
1345
+ t_rot = (t_rot * cos) + (_rotate_half(t_rot) * sin)
1346
+ return torch.cat((t_rot, t_pass), dim=-1).type_as(t)
1347
+
1348
+
1349
+ class RMSNorm(torch.nn.Module):
1350
+ def __init__(self, dim: int, eps: float = 1e-6):
1351
+ super().__init__()
1352
+ self.eps = eps
1353
+ self.weight = nn.Parameter(torch.ones(dim))
1354
+
1355
+ def _norm(self, x):
1356
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
1357
+
1358
+ def forward(self, x):
1359
+ if rms_norm is not None and x.is_cuda:
1360
+ return rms_norm(x, self.weight, self.eps)
1361
+ else:
1362
+ output = self._norm(x.float()).type_as(x)
1363
+ return output * self.weight
Qwen/Qwen-1_8B-Chat/qwen.tiktoken ADDED
The diff for this file is too large to render. See raw diff
 
Qwen/Qwen-1_8B-Chat/qwen_generation_utils.py ADDED
@@ -0,0 +1,416 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ """Generation support."""
7
+
8
+ from typing import Tuple, List, Union, Iterable
9
+
10
+ import numpy as np
11
+ import torch
12
+ import torch.nn.functional as F
13
+ from transformers import PreTrainedTokenizer
14
+ from transformers import logging
15
+ from transformers.generation import LogitsProcessor
16
+
17
+ logger = logging.get_logger(__name__)
18
+
19
+ # Types.
20
+ HistoryType = List[Tuple[str, str]]
21
+ TokensType = List[int]
22
+ BatchTokensType = List[List[int]]
23
+
24
+
25
+ def pad_batch(batch: BatchTokensType, pad_id: int, seq_length: int) -> BatchTokensType:
26
+ for tokens in batch:
27
+ context_length = len(tokens)
28
+ if context_length < seq_length:
29
+ tokens.extend([pad_id] * (seq_length - context_length))
30
+ return batch
31
+
32
+
33
+ def get_ltor_masks_and_position_ids(
34
+ data,
35
+ eod_token,
36
+ reset_position_ids,
37
+ reset_attention_mask,
38
+ eod_mask_loss,
39
+ ):
40
+ """Build masks and position id for left to right model."""
41
+
42
+ # Extract batch size and sequence length.
43
+ micro_batch_size, seq_length = data.size()
44
+
45
+ # Attention mask (lower triangular).
46
+ if reset_attention_mask:
47
+ att_mask_batch = micro_batch_size
48
+ else:
49
+ att_mask_batch = 1
50
+ attention_mask = torch.tril(
51
+ torch.ones((att_mask_batch, seq_length, seq_length), device=data.device)
52
+ ).view(att_mask_batch, 1, seq_length, seq_length)
53
+
54
+ # Loss mask.
55
+ loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device)
56
+ if eod_mask_loss:
57
+ loss_mask[data == eod_token] = 0.0
58
+
59
+ # Position ids.
60
+ position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device)
61
+ position_ids = position_ids.unsqueeze(0).expand_as(data)
62
+ # We need to clone as the ids will be modifed based on batch index.
63
+ if reset_position_ids:
64
+ position_ids = position_ids.clone()
65
+
66
+ if reset_position_ids or reset_attention_mask:
67
+ # Loop through the batches:
68
+ for b in range(micro_batch_size):
69
+
70
+ # Find indecies where EOD token is.
71
+ eod_index = position_ids[b, data[b] == eod_token]
72
+ # Detach indecies from positions if going to modify positions.
73
+ if reset_position_ids:
74
+ eod_index = eod_index.clone()
75
+
76
+ # Loop through EOD indecies:
77
+ prev_index = 0
78
+ for j in range(eod_index.size()[0]):
79
+ i = eod_index[j]
80
+ # Mask attention loss.
81
+ if reset_attention_mask:
82
+ attention_mask[b, 0, (i + 1) :, : (i + 1)] = 0
83
+ # Reset positions.
84
+ if reset_position_ids:
85
+ position_ids[b, (i + 1) :] -= i + 1 - prev_index
86
+ prev_index = i + 1
87
+
88
+ # Convert attention mask to binary:
89
+ attention_mask = attention_mask < 0.5
90
+
91
+ return attention_mask, loss_mask, position_ids
92
+
93
+
94
+ def get_batch(context_tokens: torch.LongTensor, eod_id: int):
95
+ """Generate batch from context tokens."""
96
+ # Move to GPU.
97
+ tokens = context_tokens.contiguous().to(context_tokens.device)
98
+ # Get the attention mask and postition ids.
99
+ attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
100
+ tokens,
101
+ eod_id,
102
+ reset_position_ids=False,
103
+ reset_attention_mask=False,
104
+ eod_mask_loss=False,
105
+ )
106
+ return tokens, attention_mask, position_ids
107
+
108
+
109
+ def get_stop_words_ids(chat_format, tokenizer):
110
+ if chat_format == "raw":
111
+ stop_words_ids = [tokenizer.encode("Human:"), [tokenizer.eod_id]]
112
+ elif chat_format == "chatml":
113
+ stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id]]
114
+ else:
115
+ raise NotImplementedError(f"Unknown chat format {chat_format!r}")
116
+ return stop_words_ids
117
+
118
+
119
+ def make_context(
120
+ tokenizer: PreTrainedTokenizer,
121
+ query: str,
122
+ history: List[Tuple[str, str]] = None,
123
+ system: str = "",
124
+ max_window_size: int = 6144,
125
+ chat_format: str = "chatml",
126
+ ):
127
+ if history is None:
128
+ history = []
129
+
130
+ if chat_format == "chatml":
131
+ im_start, im_end = "<|im_start|>", "<|im_end|>"
132
+ im_start_tokens = [tokenizer.im_start_id]
133
+ im_end_tokens = [tokenizer.im_end_id]
134
+ nl_tokens = tokenizer.encode("\n")
135
+
136
+ def _tokenize_str(role, content):
137
+ return f"{role}\n{content}", tokenizer.encode(
138
+ role, allowed_special=set()
139
+ ) + nl_tokens + tokenizer.encode(content, allowed_special=set())
140
+
141
+ system_text, system_tokens_part = _tokenize_str("system", system)
142
+ system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
143
+
144
+ raw_text = ""
145
+ context_tokens = []
146
+
147
+ for turn_query, turn_response in reversed(history):
148
+ query_text, query_tokens_part = _tokenize_str("user", turn_query)
149
+ query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
150
+ response_text, response_tokens_part = _tokenize_str(
151
+ "assistant", turn_response
152
+ )
153
+ response_tokens = im_start_tokens + response_tokens_part + im_end_tokens
154
+
155
+ next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens
156
+ prev_chat = (
157
+ f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}"
158
+ )
159
+
160
+ current_context_size = (
161
+ len(system_tokens) + len(next_context_tokens) + len(context_tokens)
162
+ )
163
+ if current_context_size < max_window_size:
164
+ context_tokens = next_context_tokens + context_tokens
165
+ raw_text = prev_chat + raw_text
166
+ else:
167
+ break
168
+
169
+ context_tokens = system_tokens + context_tokens
170
+ raw_text = f"{im_start}{system_text}{im_end}" + raw_text
171
+ context_tokens += (
172
+ nl_tokens
173
+ + im_start_tokens
174
+ + _tokenize_str("user", query)[1]
175
+ + im_end_tokens
176
+ + nl_tokens
177
+ + im_start_tokens
178
+ + tokenizer.encode("assistant")
179
+ + nl_tokens
180
+ )
181
+ raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n"
182
+
183
+ elif chat_format == "raw":
184
+ raw_text = query
185
+ context_tokens = tokenizer.encode(raw_text)
186
+ else:
187
+ raise NotImplementedError(f"Unknown chat format {chat_format!r}")
188
+
189
+ return raw_text, context_tokens
190
+
191
+
192
+ def _decode_default(
193
+ tokens: List[int],
194
+ *,
195
+ stop_words: List[str],
196
+ eod_words: List[str],
197
+ tokenizer: PreTrainedTokenizer,
198
+ raw_text_len: int,
199
+ verbose: bool = False,
200
+ return_end_reason: bool = False,
201
+ errors: str='replace',
202
+ ):
203
+ trim_decode_tokens = tokenizer.decode(tokens, errors=errors)[raw_text_len:]
204
+ if verbose:
205
+ print("\nRaw Generate: ", trim_decode_tokens)
206
+
207
+ end_reason = f"Gen length {len(tokens)}"
208
+ for stop_word in stop_words:
209
+ trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
210
+ for eod_word in eod_words:
211
+ if eod_word in trim_decode_tokens:
212
+ end_reason = f"Gen {eod_word!r}"
213
+ trim_decode_tokens = trim_decode_tokens.split(eod_word)[0]
214
+ trim_decode_tokens = trim_decode_tokens.strip()
215
+ if verbose:
216
+ print("\nEnd Reason:", end_reason)
217
+ print("\nGenerate: ", trim_decode_tokens)
218
+
219
+ if return_end_reason:
220
+ return trim_decode_tokens, end_reason
221
+ else:
222
+ return trim_decode_tokens
223
+
224
+
225
+ def _decode_chatml(
226
+ tokens: List[int],
227
+ *,
228
+ stop_words: List[str],
229
+ eod_token_ids: List[int],
230
+ tokenizer: PreTrainedTokenizer,
231
+ raw_text_len: int,
232
+ context_length: int,
233
+ verbose: bool = False,
234
+ return_end_reason: bool = False,
235
+ errors: str='replace'
236
+ ):
237
+ end_reason = f"Gen length {len(tokens)}"
238
+ eod_token_idx = context_length
239
+ for eod_token_idx in range(context_length, len(tokens)):
240
+ if tokens[eod_token_idx] in eod_token_ids:
241
+ end_reason = f"Gen {tokenizer.decode([tokens[eod_token_idx]])!r}"
242
+ break
243
+
244
+ trim_decode_tokens = tokenizer.decode(tokens[:eod_token_idx], errors=errors)[raw_text_len:]
245
+ if verbose:
246
+ print("\nRaw Generate w/o EOD:", tokenizer.decode(tokens, errors=errors)[raw_text_len:])
247
+ print("\nRaw Generate:", trim_decode_tokens)
248
+ print("\nEnd Reason:", end_reason)
249
+ for stop_word in stop_words:
250
+ trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
251
+ trim_decode_tokens = trim_decode_tokens.strip()
252
+ if verbose:
253
+ print("\nGenerate:", trim_decode_tokens)
254
+
255
+ if return_end_reason:
256
+ return trim_decode_tokens, end_reason
257
+ else:
258
+ return trim_decode_tokens
259
+
260
+
261
+ def decode_tokens(
262
+ tokens: Union[torch.LongTensor, TokensType],
263
+ tokenizer: PreTrainedTokenizer,
264
+ raw_text_len: int,
265
+ context_length: int,
266
+ chat_format: str,
267
+ verbose: bool = False,
268
+ return_end_reason: bool = False,
269
+ errors: str="replace",
270
+ ) -> str:
271
+ if torch.is_tensor(tokens):
272
+ tokens = tokens.cpu().numpy().tolist()
273
+
274
+ if chat_format == "chatml":
275
+ return _decode_chatml(
276
+ tokens,
277
+ stop_words=[],
278
+ eod_token_ids=[tokenizer.im_start_id, tokenizer.im_end_id],
279
+ tokenizer=tokenizer,
280
+ raw_text_len=raw_text_len,
281
+ context_length=context_length,
282
+ verbose=verbose,
283
+ return_end_reason=return_end_reason,
284
+ errors=errors,
285
+ )
286
+ elif chat_format == "raw":
287
+ return _decode_default(
288
+ tokens,
289
+ stop_words=["<|endoftext|>"],
290
+ eod_words=["<|endoftext|>"],
291
+ tokenizer=tokenizer,
292
+ raw_text_len=raw_text_len,
293
+ verbose=verbose,
294
+ return_end_reason=return_end_reason,
295
+ errors=errors,
296
+ )
297
+ else:
298
+ raise NotImplementedError(f"Unknown chat format {chat_format!r}")
299
+
300
+
301
+ class StopWordsLogitsProcessor(LogitsProcessor):
302
+ """
303
+ :class:`transformers.LogitsProcessor` that enforces that when specified sequences appear, stop geration.
304
+
305
+ Args:
306
+ stop_words_ids (:obj:`List[List[int]]`):
307
+ List of list of token ids of stop ids. In order to get the tokens of the words
308
+ that should not appear in the generated text, use :obj:`tokenizer(bad_word,
309
+ add_prefix_space=True).input_ids`.
310
+ eos_token_id (:obj:`int`):
311
+ The id of the `end-of-sequence` token.
312
+ """
313
+
314
+ def __init__(self, stop_words_ids: Iterable[Iterable[int]], eos_token_id: int):
315
+
316
+ if not isinstance(stop_words_ids, List) or len(stop_words_ids) == 0:
317
+ raise ValueError(
318
+ f"`stop_words_ids` has to be a non-emtpy list, but is {stop_words_ids}."
319
+ )
320
+ if any(not isinstance(bad_word_ids, list) for bad_word_ids in stop_words_ids):
321
+ raise ValueError(
322
+ f"`stop_words_ids` has to be a list of lists, but is {stop_words_ids}."
323
+ )
324
+ if any(
325
+ any(
326
+ (not isinstance(token_id, (int, np.integer)) or token_id < 0)
327
+ for token_id in stop_word_ids
328
+ )
329
+ for stop_word_ids in stop_words_ids
330
+ ):
331
+ raise ValueError(
332
+ f"Each list in `stop_words_ids` has to be a list of positive integers, but is {stop_words_ids}."
333
+ )
334
+
335
+ self.stop_words_ids = list(
336
+ filter(
337
+ lambda bad_token_seq: bad_token_seq != [eos_token_id], stop_words_ids
338
+ )
339
+ )
340
+ self.eos_token_id = eos_token_id
341
+ for stop_token_seq in self.stop_words_ids:
342
+ assert (
343
+ len(stop_token_seq) > 0
344
+ ), "Stop words token sequences {} cannot have an empty list".format(
345
+ stop_words_ids
346
+ )
347
+
348
+ def __call__(
349
+ self, input_ids: torch.LongTensor, scores: torch.FloatTensor
350
+ ) -> torch.FloatTensor:
351
+ stopped_samples = self._calc_stopped_samples(input_ids)
352
+ for i, should_stop in enumerate(stopped_samples):
353
+ if should_stop:
354
+ scores[i, self.eos_token_id] = float(2**15)
355
+ return scores
356
+
357
+ def _tokens_match(self, prev_tokens: torch.LongTensor, tokens: List[int]) -> bool:
358
+ if len(tokens) == 0:
359
+ # if bad word tokens is just one token always ban it
360
+ return True
361
+ elif len(tokens) > len(prev_tokens):
362
+ # if bad word tokens are longer then prev input_ids they can't be equal
363
+ return False
364
+ elif prev_tokens[-len(tokens) :].tolist() == tokens:
365
+ # if tokens match
366
+ return True
367
+ else:
368
+ return False
369
+
370
+ def _calc_stopped_samples(self, prev_input_ids: Iterable[int]) -> Iterable[int]:
371
+ stopped_samples = []
372
+ for prev_input_ids_slice in prev_input_ids:
373
+ match = False
374
+ for stop_token_seq in self.stop_words_ids:
375
+ if self._tokens_match(prev_input_ids_slice, stop_token_seq):
376
+ # if tokens do not match continue
377
+ match = True
378
+ break
379
+ stopped_samples.append(match)
380
+
381
+ return stopped_samples
382
+
383
+
384
+ def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float("Inf")):
385
+ """This function has been mostly taken from huggingface conversational
386
+ ai code at
387
+ https://medium.com/huggingface/how-to-build-a-state-of-the-art-
388
+ conversational-ai-with-transfer-learning-2d818ac26313"""
389
+
390
+ if top_k > 0:
391
+ # Remove all tokens with a probability less than the
392
+ # last token of the top-k
393
+ indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
394
+ logits[indices_to_remove] = filter_value
395
+
396
+ if top_p > 0.0:
397
+ # Cconvert to 1D
398
+ sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
399
+ cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
400
+
401
+ # Remove tokens with cumulative probability above the threshold
402
+ sorted_indices_to_remove = cumulative_probs > top_p
403
+ # Shift the indices to the right to keep also the first token
404
+ # above the threshold
405
+ sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
406
+ sorted_indices_to_remove[..., 0] = 0
407
+ for i in range(sorted_indices.size(0)):
408
+ indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]]
409
+ logits[i][indices_to_remove] = filter_value
410
+
411
+ return logits
412
+
413
+
414
+ def switch(val1, val2, boolean):
415
+ boolean = boolean.type_as(val1)
416
+ return (1 - boolean) * val1 + boolean * val2
Qwen/Qwen-1_8B-Chat/tokenization_qwen.py ADDED
@@ -0,0 +1,276 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ """Tokenization classes for QWen."""
7
+
8
+ import base64
9
+ import logging
10
+ import os
11
+ import unicodedata
12
+ from typing import Collection, Dict, List, Set, Tuple, Union
13
+
14
+ import tiktoken
15
+ from transformers import PreTrainedTokenizer, AddedToken
16
+
17
+ logger = logging.getLogger(__name__)
18
+
19
+
20
+ VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
21
+
22
+ PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
23
+ ENDOFTEXT = "<|endoftext|>"
24
+ IMSTART = "<|im_start|>"
25
+ IMEND = "<|im_end|>"
26
+ # as the default behavior is changed to allow special tokens in
27
+ # regular texts, the surface forms of special tokens need to be
28
+ # as different as possible to minimize the impact
29
+ EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
30
+ # changed to use actual index to avoid misconfiguration with vocabulary expansion
31
+ SPECIAL_START_ID = 151643
32
+ SPECIAL_TOKENS = tuple(
33
+ enumerate(
34
+ (
35
+ (
36
+ ENDOFTEXT,
37
+ IMSTART,
38
+ IMEND,
39
+ )
40
+ + EXTRAS
41
+ ),
42
+ start=SPECIAL_START_ID,
43
+ )
44
+ )
45
+ SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
46
+
47
+
48
+ def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
49
+ with open(tiktoken_bpe_file, "rb") as f:
50
+ contents = f.read()
51
+ return {
52
+ base64.b64decode(token): int(rank)
53
+ for token, rank in (line.split() for line in contents.splitlines() if line)
54
+ }
55
+
56
+
57
+ class QWenTokenizer(PreTrainedTokenizer):
58
+ """QWen tokenizer."""
59
+
60
+ vocab_files_names = VOCAB_FILES_NAMES
61
+
62
+ def __init__(
63
+ self,
64
+ vocab_file,
65
+ errors="replace",
66
+ extra_vocab_file=None,
67
+ **kwargs,
68
+ ):
69
+ super().__init__(**kwargs)
70
+
71
+ # how to handle errors in decoding UTF-8 byte sequences
72
+ # use ignore if you are in streaming inference
73
+ self.errors = errors
74
+
75
+ self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
76
+ self.special_tokens = {
77
+ token: index
78
+ for index, token in SPECIAL_TOKENS
79
+ }
80
+
81
+ # try load extra vocab from file
82
+ if extra_vocab_file is not None:
83
+ used_ids = set(self.mergeable_ranks.values()) | set(self.special_tokens.values())
84
+ extra_mergeable_ranks = _load_tiktoken_bpe(extra_vocab_file)
85
+ for token, index in extra_mergeable_ranks.items():
86
+ if token in self.mergeable_ranks:
87
+ logger.info(f"extra token {token} exists, skipping")
88
+ continue
89
+ if index in used_ids:
90
+ logger.info(f'the index {index} for extra token {token} exists, skipping')
91
+ continue
92
+ self.mergeable_ranks[token] = index
93
+ # the index may be sparse after this, but don't worry tiktoken.Encoding will handle this
94
+
95
+ enc = tiktoken.Encoding(
96
+ "Qwen",
97
+ pat_str=PAT_STR,
98
+ mergeable_ranks=self.mergeable_ranks,
99
+ special_tokens=self.special_tokens,
100
+ )
101
+ assert (
102
+ len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
103
+ ), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
104
+
105
+ self.decoder = {
106
+ v: k for k, v in self.mergeable_ranks.items()
107
+ } # type: dict[int, bytes|str]
108
+ self.decoder.update({v: k for k, v in self.special_tokens.items()})
109
+
110
+ self.tokenizer = enc # type: tiktoken.Encoding
111
+
112
+ self.eod_id = self.tokenizer.eot_token
113
+ self.im_start_id = self.special_tokens[IMSTART]
114
+ self.im_end_id = self.special_tokens[IMEND]
115
+
116
+ def __getstate__(self):
117
+ # for pickle lovers
118
+ state = self.__dict__.copy()
119
+ del state["tokenizer"]
120
+ return state
121
+
122
+ def __setstate__(self, state):
123
+ # tokenizer is not python native; don't pass it; rebuild it
124
+ self.__dict__.update(state)
125
+ enc = tiktoken.Encoding(
126
+ "Qwen",
127
+ pat_str=PAT_STR,
128
+ mergeable_ranks=self.mergeable_ranks,
129
+ special_tokens=self.special_tokens,
130
+ )
131
+ self.tokenizer = enc
132
+
133
+ def __len__(self) -> int:
134
+ return self.tokenizer.n_vocab
135
+
136
+ def get_vocab(self) -> Dict[bytes, int]:
137
+ return self.mergeable_ranks
138
+
139
+ def convert_tokens_to_ids(
140
+ self, tokens: Union[bytes, str, List[Union[bytes, str]]]
141
+ ) -> List[int]:
142
+ ids = []
143
+ if isinstance(tokens, (str, bytes)):
144
+ if tokens in self.special_tokens:
145
+ return self.special_tokens[tokens]
146
+ else:
147
+ return self.mergeable_ranks.get(tokens)
148
+ for token in tokens:
149
+ if token in self.special_tokens:
150
+ ids.append(self.special_tokens[token])
151
+ else:
152
+ ids.append(self.mergeable_ranks.get(token))
153
+ return ids
154
+
155
+ def _add_tokens(
156
+ self,
157
+ new_tokens: Union[List[str], List[AddedToken]],
158
+ special_tokens: bool = False,
159
+ ) -> int:
160
+ if not special_tokens and new_tokens:
161
+ raise ValueError("Adding regular tokens is not supported")
162
+ for token in new_tokens:
163
+ surface_form = token.content if isinstance(token, AddedToken) else token
164
+ if surface_form not in SPECIAL_TOKENS_SET:
165
+ raise ValueError("Adding unknown special tokens is not supported")
166
+ return 0
167
+
168
+ def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
169
+ """
170
+ Save only the vocabulary of the tokenizer (vocabulary).
171
+
172
+ Returns:
173
+ `Tuple(str)`: Paths to the files saved.
174
+ """
175
+ file_path = os.path.join(save_directory, "qwen.tiktoken")
176
+ with open(file_path, "w", encoding="utf8") as w:
177
+ for k, v in self.mergeable_ranks.items():
178
+ line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
179
+ w.write(line)
180
+ return (file_path,)
181
+
182
+ def tokenize(
183
+ self,
184
+ text: str,
185
+ allowed_special: Union[Set, str] = "all",
186
+ disallowed_special: Union[Collection, str] = (),
187
+ **kwargs,
188
+ ) -> List[Union[bytes, str]]:
189
+ """
190
+ Converts a string in a sequence of tokens.
191
+
192
+ Args:
193
+ text (`str`):
194
+ The sequence to be encoded.
195
+ allowed_special (`Literal["all"]` or `set`):
196
+ The surface forms of the tokens to be encoded as special tokens in regular texts.
197
+ Default to "all".
198
+ disallowed_special (`Literal["all"]` or `Collection`):
199
+ The surface forms of the tokens that should not be in regular texts and trigger errors.
200
+ Default to an empty tuple.
201
+
202
+ kwargs (additional keyword arguments, *optional*):
203
+ Will be passed to the underlying model specific encode method.
204
+
205
+ Returns:
206
+ `List[bytes|str]`: The list of tokens.
207
+ """
208
+ tokens = []
209
+ text = unicodedata.normalize("NFC", text)
210
+
211
+ # this implementation takes a detour: text -> token id -> token surface forms
212
+ for t in self.tokenizer.encode(
213
+ text, allowed_special=allowed_special, disallowed_special=disallowed_special
214
+ ):
215
+ tokens.append(self.decoder[t])
216
+ return tokens
217
+
218
+ def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
219
+ """
220
+ Converts a sequence of tokens in a single string.
221
+ """
222
+ text = ""
223
+ temp = b""
224
+ for t in tokens:
225
+ if isinstance(t, str):
226
+ if temp:
227
+ text += temp.decode("utf-8", errors=self.errors)
228
+ temp = b""
229
+ text += t
230
+ elif isinstance(t, bytes):
231
+ temp += t
232
+ else:
233
+ raise TypeError("token should only be of type types or str")
234
+ if temp:
235
+ text += temp.decode("utf-8", errors=self.errors)
236
+ return text
237
+
238
+ @property
239
+ def vocab_size(self):
240
+ return self.tokenizer.n_vocab
241
+
242
+ def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
243
+ """Converts an id to a token, special tokens included"""
244
+ if index in self.decoder:
245
+ return self.decoder[index]
246
+ raise ValueError("unknown ids")
247
+
248
+ def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
249
+ """Converts a token to an id using the vocab, special tokens included"""
250
+ if token in self.special_tokens:
251
+ return self.special_tokens[token]
252
+ if token in self.mergeable_ranks:
253
+ return self.mergeable_ranks[token]
254
+ raise ValueError("unknown token")
255
+
256
+ def _tokenize(self, text: str, **kwargs):
257
+ """
258
+ Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
259
+ vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
260
+
261
+ Do NOT take care of added tokens.
262
+ """
263
+ raise NotImplementedError
264
+
265
+ def _decode(
266
+ self,
267
+ token_ids: Union[int, List[int]],
268
+ skip_special_tokens: bool = False,
269
+ errors: str = None,
270
+ **kwargs,
271
+ ) -> str:
272
+ if isinstance(token_ids, int):
273
+ token_ids = [token_ids]
274
+ if skip_special_tokens:
275
+ token_ids = [i for i in token_ids if i < self.eod_id]
276
+ return self.tokenizer.decode(token_ids, errors=errors or self.errors)
Qwen/Qwen-1_8B-Chat/tokenizer_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_max_length": 8192,
3
+ "tokenizer_class": "QWenTokenizer",
4
+ "auto_map": {
5
+ "AutoTokenizer": [
6
+ "tokenization_qwen.QWenTokenizer",
7
+ null
8
+ ]
9
+ }
10
+ }
checkpoints/SadTalker_V0.0.2_256.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c211f5d6de003516bf1bbda9f47049a4c9c99133b1ab565c6961e5af16477bff
3
+ size 725066984
checkpoints/hub/checkpoints/s3fd-619a316812.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:619a31681264d3f7f7fc7a16a42cbbe8b23f31a256f75a366e5a1bcd59b33543
3
+ size 89843225
checkpoints/lipsync_expert.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b9936c721696446eeed353032cab242a8cf0eed8c46cde540366f6ae5493be5
3
+ size 197357631
checkpoints/mapping_00109-model.pth.tar ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84a8642468a3fcfdd9ab6be955267043116c2bec2284686a5262f1eaf017f64c
3
+ size 155779231
checkpoints/mapping_00229-model.pth.tar ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62a1e06006cc963220f6477438518ed86e9788226c62ae382ddc42fbcefb83f1
3
+ size 155521183
checkpoints/visual_quality_disc.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3f8f6f7e954af02f2ffe0f3ea11f3259af89bff6e70933001c7c6bc8c145d96
3
+ size 169382040
checkpoints/wav2lip.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b78b681b68ad9fe6c6fb1debc6ff43ad05834a8af8a62ffc4167b7b34ef63c37
3
+ size 435807851
checkpoints/wav2lip_gan.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca9ab7b7b812c0e80a6e70a5977c545a1e8a365a6c49d5e533023c034d7ac3d8
3
+ size 435801865
gfpgan/weights/alignment_WFLW_4HG.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bbfd137307a4c7debd5c283b9b0ce539466cee417ac0a155e184d857f9f2899c
3
+ size 193670248
gfpgan/weights/detection_Resnet50_Final.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d1de9c2944f2ccddca5f5e010ea5ae64a39845a86311af6fdf30841b0a5a16d
3
+ size 109497761