Keetawan commited on
Commit
67b62db
·
verified ·
1 Parent(s): 9815fb5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +36 -3
README.md CHANGED
@@ -1,3 +1,36 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - th
5
+ tags:
6
+ - sequence-tagging
7
+ - aspect-based-sentiment
8
+ ---
9
+
10
+ # XLM-RoBERTa-Large for Aspect-Based Sentiment Analysis
11
+
12
+ This is a fine-tuned XLM-RoBERTa-Large model for Aspect-Based Sentiment Analysis in Thai. The model is fine-tuned on a dataset specifically for the task of identifying sentiments related to specific aspects within sentences.
13
+
14
+ ## Model Description
15
+
16
+ XLM-RoBERTa is a large multilingual language model that has been fine-tuned for sequence tagging tasks. This model has been further fine-tuned for Aspect-Based Sentiment Analysis, making it suitable for applications that require understanding of sentiments expressed towards specific aspects within a text.
17
+
18
+ ## Usage
19
+
20
+ You can use this model for sequence tagging and aspect-based sentiment analysis in the Thai language. Here is a quick example of how to use it:
21
+
22
+ ```python
23
+ from transformers import AutoTokenizer, AutoModelForTokenClassification
24
+ from transformers import pipeline
25
+
26
+ tokenizer = AutoTokenizer.from_pretrained("path_to_your_model")
27
+ model = AutoModelForTokenClassification.from_pretrained("path_to_your_model")
28
+
29
+ nlp = pipeline("token-classification", model=model, tokenizer=tokenizer)
30
+
31
+ text = "ใส่ประโยคภาษาไทยที่ต้องการวิเคราะห์ที่นี่"
32
+ result = nlp(text)
33
+
34
+ for item in result:
35
+ print(item)
36
+