--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: wk3ex_bert_imdb_sentiment results: [] datasets: Kaggle imdb dataseg # wk3ex_bert_imdb_sentiment This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2804 - Accuracy: 0.9201 - Precision: 0.9201 - Recall: 0.9201 - F1: 0.9201 ## Model description Exercise for University course. Finetuning for sentiment analysis with imdb Kaggle dataset ## Intended uses & limitations Sentiment analysis ## Training and evaluation data finetuning with imdb dataset ## Training procedure 2 epochs ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.2405 | 1.0 | 2500 | 0.2392 | 0.9093 | 0.9107 | 0.9093 | 0.9092 | | 0.1183 | 2.0 | 5000 | 0.2804 | 0.9201 | 0.9201 | 0.9201 | 0.9201 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0