Upload folder using huggingface_hub
Browse files- 2024-06-24-21-18/training.log +247 -0
2024-06-24-21-18/training.log
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
trainer:
|
2 |
+
target: trainer.TrainerDifIR
|
3 |
+
model:
|
4 |
+
target: models.unet.UNetModelSwin
|
5 |
+
ckpt_path: null
|
6 |
+
params:
|
7 |
+
image_size: 64
|
8 |
+
in_channels: 3
|
9 |
+
model_channels: 160
|
10 |
+
out_channels: 3
|
11 |
+
attention_resolutions:
|
12 |
+
- 64
|
13 |
+
- 32
|
14 |
+
- 16
|
15 |
+
- 8
|
16 |
+
dropout: 0
|
17 |
+
channel_mult:
|
18 |
+
- 1
|
19 |
+
- 2
|
20 |
+
- 2
|
21 |
+
- 4
|
22 |
+
num_res_blocks:
|
23 |
+
- 2
|
24 |
+
- 2
|
25 |
+
- 2
|
26 |
+
- 2
|
27 |
+
conv_resample: true
|
28 |
+
dims: 2
|
29 |
+
use_fp16: false
|
30 |
+
num_head_channels: 32
|
31 |
+
use_scale_shift_norm: true
|
32 |
+
resblock_updown: false
|
33 |
+
swin_depth: 2
|
34 |
+
swin_embed_dim: 192
|
35 |
+
window_size: 8
|
36 |
+
mlp_ratio: 4
|
37 |
+
cond_lq: true
|
38 |
+
lq_size: 64
|
39 |
+
diffusion:
|
40 |
+
target: models.script_util.create_gaussian_diffusion
|
41 |
+
params:
|
42 |
+
sf: 4
|
43 |
+
schedule_name: exponential
|
44 |
+
schedule_kwargs:
|
45 |
+
power: 0.3
|
46 |
+
etas_end: 0.99
|
47 |
+
steps: 15
|
48 |
+
min_noise_level: 0.04
|
49 |
+
kappa: 2.0
|
50 |
+
weighted_mse: false
|
51 |
+
predict_type: xstart
|
52 |
+
timestep_respacing: null
|
53 |
+
scale_factor: 1.0
|
54 |
+
normalize_input: true
|
55 |
+
latent_flag: true
|
56 |
+
autoencoder:
|
57 |
+
target: ldm.models.autoencoder.VQModelTorch
|
58 |
+
ckpt_path: weights/autoencoder_vq_f4.pth
|
59 |
+
use_fp16: true
|
60 |
+
params:
|
61 |
+
embed_dim: 3
|
62 |
+
n_embed: 8192
|
63 |
+
ddconfig:
|
64 |
+
double_z: false
|
65 |
+
z_channels: 3
|
66 |
+
resolution: 256
|
67 |
+
in_channels: 3
|
68 |
+
out_ch: 3
|
69 |
+
ch: 128
|
70 |
+
ch_mult:
|
71 |
+
- 1
|
72 |
+
- 2
|
73 |
+
- 4
|
74 |
+
num_res_blocks: 2
|
75 |
+
attn_resolutions: []
|
76 |
+
dropout: 0.0
|
77 |
+
padding_mode: zeros
|
78 |
+
degradation:
|
79 |
+
sf: 4
|
80 |
+
resize_prob:
|
81 |
+
- 0.2
|
82 |
+
- 0.7
|
83 |
+
- 0.1
|
84 |
+
resize_range:
|
85 |
+
- 0.15
|
86 |
+
- 1.5
|
87 |
+
gaussian_noise_prob: 0.5
|
88 |
+
noise_range:
|
89 |
+
- 1
|
90 |
+
- 30
|
91 |
+
poisson_scale_range:
|
92 |
+
- 0.05
|
93 |
+
- 3.0
|
94 |
+
gray_noise_prob: 0.4
|
95 |
+
jpeg_range:
|
96 |
+
- 30
|
97 |
+
- 95
|
98 |
+
second_order_prob: 0.5
|
99 |
+
second_blur_prob: 0.8
|
100 |
+
resize_prob2:
|
101 |
+
- 0.3
|
102 |
+
- 0.4
|
103 |
+
- 0.3
|
104 |
+
resize_range2:
|
105 |
+
- 0.3
|
106 |
+
- 1.2
|
107 |
+
gaussian_noise_prob2: 0.5
|
108 |
+
noise_range2:
|
109 |
+
- 1
|
110 |
+
- 25
|
111 |
+
poisson_scale_range2:
|
112 |
+
- 0.05
|
113 |
+
- 2.5
|
114 |
+
gray_noise_prob2: 0.4
|
115 |
+
jpeg_range2:
|
116 |
+
- 30
|
117 |
+
- 95
|
118 |
+
gt_size: 256
|
119 |
+
resize_back: false
|
120 |
+
use_sharp: false
|
121 |
+
data:
|
122 |
+
train:
|
123 |
+
type: realesrgan
|
124 |
+
params:
|
125 |
+
dir_paths: []
|
126 |
+
txt_file_path:
|
127 |
+
- /content/ResShift/high_res/train.txt
|
128 |
+
im_exts:
|
129 |
+
- JPEG
|
130 |
+
io_backend:
|
131 |
+
type: disk
|
132 |
+
blur_kernel_size: 21
|
133 |
+
kernel_list:
|
134 |
+
- iso
|
135 |
+
- aniso
|
136 |
+
- generalized_iso
|
137 |
+
- generalized_aniso
|
138 |
+
- plateau_iso
|
139 |
+
- plateau_aniso
|
140 |
+
kernel_prob:
|
141 |
+
- 0.45
|
142 |
+
- 0.25
|
143 |
+
- 0.12
|
144 |
+
- 0.03
|
145 |
+
- 0.12
|
146 |
+
- 0.03
|
147 |
+
sinc_prob: 0.1
|
148 |
+
blur_sigma:
|
149 |
+
- 0.2
|
150 |
+
- 3.0
|
151 |
+
betag_range:
|
152 |
+
- 0.5
|
153 |
+
- 4.0
|
154 |
+
betap_range:
|
155 |
+
- 1
|
156 |
+
- 2.0
|
157 |
+
blur_kernel_size2: 15
|
158 |
+
kernel_list2:
|
159 |
+
- iso
|
160 |
+
- aniso
|
161 |
+
- generalized_iso
|
162 |
+
- generalized_aniso
|
163 |
+
- plateau_iso
|
164 |
+
- plateau_aniso
|
165 |
+
kernel_prob2:
|
166 |
+
- 0.45
|
167 |
+
- 0.25
|
168 |
+
- 0.12
|
169 |
+
- 0.03
|
170 |
+
- 0.12
|
171 |
+
- 0.03
|
172 |
+
sinc_prob2: 0.1
|
173 |
+
blur_sigma2:
|
174 |
+
- 0.2
|
175 |
+
- 1.5
|
176 |
+
betag_range2:
|
177 |
+
- 0.5
|
178 |
+
- 4.0
|
179 |
+
betap_range2:
|
180 |
+
- 1
|
181 |
+
- 2.0
|
182 |
+
final_sinc_prob: 0.8
|
183 |
+
gt_size: 256
|
184 |
+
crop_pad_size: 300
|
185 |
+
use_hflip: true
|
186 |
+
use_rot: false
|
187 |
+
rescale_gt: true
|
188 |
+
val:
|
189 |
+
type: base
|
190 |
+
params:
|
191 |
+
dir_path: testdata/Val_SR/lq
|
192 |
+
im_exts: png
|
193 |
+
transform_type: default
|
194 |
+
transform_kwargs:
|
195 |
+
mean: 0.5
|
196 |
+
std: 0.5
|
197 |
+
extra_dir_path: testdata/Val_SR/gt
|
198 |
+
extra_transform_type: default
|
199 |
+
extra_transform_kwargs:
|
200 |
+
mean: 0.5
|
201 |
+
std: 0.5
|
202 |
+
recursive: false
|
203 |
+
train:
|
204 |
+
lr: 5.0e-05
|
205 |
+
lr_min: 2.0e-05
|
206 |
+
lr_schedule: null
|
207 |
+
warmup_iterations: 100
|
208 |
+
batch:
|
209 |
+
- 8
|
210 |
+
- 1
|
211 |
+
microbatch: 1
|
212 |
+
num_workers: 4
|
213 |
+
prefetch_factor: 2
|
214 |
+
weight_decay: 0
|
215 |
+
ema_rate: 0.999
|
216 |
+
iterations: 1000
|
217 |
+
save_freq: 10000
|
218 |
+
log_freq:
|
219 |
+
- 200
|
220 |
+
- 2000
|
221 |
+
- 1
|
222 |
+
local_logging: true
|
223 |
+
tf_logging: false
|
224 |
+
use_ema_val: true
|
225 |
+
val_freq: ${train.save_freq}
|
226 |
+
val_y_channel: true
|
227 |
+
val_resolution: ${model.params.lq_size}
|
228 |
+
val_padding_mode: reflect
|
229 |
+
use_amp: true
|
230 |
+
seed: 123456
|
231 |
+
global_seeding: false
|
232 |
+
compile:
|
233 |
+
flag: false
|
234 |
+
mode: reduce-overhead
|
235 |
+
save_dir: logging/
|
236 |
+
resume: ''
|
237 |
+
cfg_path: configs/realsr_swinunet_realesrgan256.yaml
|
238 |
+
|
239 |
+
Number of parameters: 118.59M
|
240 |
+
Restoring autoencoder from weights/autoencoder_vq_f4.pth
|
241 |
+
Number of images in train data set: 1254
|
242 |
+
Number of images in val data set: 32
|
243 |
+
Train: 000200/001000, Loss/MSE: t(1):1.6e-01/1.6e-01, t(8):4.5e-01/4.5e-01, t(15):5.9e-01/5.9e-01, lr:5.00e-05
|
244 |
+
Train: 000400/001000, Loss/MSE: t(1):2.8e-02/2.8e-02, t(8):3.9e-01/3.9e-01, t(15):5.0e-01/5.0e-01, lr:5.00e-05
|
245 |
+
Train: 000600/001000, Loss/MSE: t(1):2.1e-02/2.1e-02, t(8):3.4e-01/3.4e-01, t(15):4.6e-01/4.6e-01, lr:5.00e-05
|
246 |
+
Train: 000800/001000, Loss/MSE: t(1):1.4e-02/1.4e-02, t(8):3.5e-01/3.5e-01, t(15):5.1e-01/5.1e-01, lr:5.00e-05
|
247 |
+
Train: 001000/001000, Loss/MSE: t(1):1.4e-02/1.4e-02, t(8):2.9e-01/2.9e-01, t(15):4.6e-01/4.6e-01, lr:5.00e-05
|