Kenemo commited on
Commit
f42d704
·
1 Parent(s): 7ac70d4

more training steps

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 230.27 +/- 45.30
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 272.85 +/- 22.17
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x15f8a3640>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x15f8a36d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x15f8a3760>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x15f8a37f0>", "_build": "<function ActorCriticPolicy._build at 0x15f8a3880>", "forward": "<function ActorCriticPolicy.forward at 0x15f8a3910>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x15f8a39a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x15f8a3a30>", "_predict": "<function ActorCriticPolicy._predict at 0x15f8a3ac0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x15f8a3b50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x15f8a3be0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x15f8a3c70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x15f89e0c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674569090770335000, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV3wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVi9Vc2Vycy9rYXJpbS9taW5pY29uZGEzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxWL1VzZXJzL2thcmltL21pbmljb25kYTMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIKH/3jpoIYkCUhpRSlIwBbJRN6AOMAXSUR0CAuRcL0BfbdX2UKGgGaAloD0MIiEojZnZNYkCUhpRSlGgVTegDaBZHQIC5P6wdKdx1fZQoaAZoCWgPQwjCFOXS+BZgQJSGlFKUaBVN6ANoFkdAgLqQvHtF8XV9lChoBmgJaA9DCDqwHCEDgGBAlIaUUpRoFU3oA2gWR0CAu76uW8h+dX2UKGgGaAloD0MI4ZaPpCTdZECUhpRSlGgVTegDaBZHQIC8JXIU8FJ1fZQoaAZoCWgPQwjeyafHNllhQJSGlFKUaBVN6ANoFkdAgLyscp9ZzXV9lChoBmgJaA9DCHoX78dtrGJAlIaUUpRoFU3oA2gWR0CAvehdt2s8dX2UKGgGaAloD0MIqDrkZrgEXkCUhpRSlGgVTegDaBZHQIDDdYSxqwh1fZQoaAZoCWgPQwgNjpJX55RqQJSGlFKUaBVNawFoFkdAgMWbMHKOk3V9lChoBmgJaA9DCKGGb2HdDWRAlIaUUpRoFU3oA2gWR0CAxmq814xDdX2UKGgGaAloD0MI/vM0YBAWY0CUhpRSlGgVTegDaBZHQIDP5K3/gix1fZQoaAZoCWgPQwgukQvO4GcrQJSGlFKUaBVNDgFoFkdAgNC9WZJCjXV9lChoBmgJaA9DCGFPO/y1WmNAlIaUUpRoFU3oA2gWR0CA1X8ohIOIdX2UKGgGaAloD0MI1LoNar+/YkCUhpRSlGgVTegDaBZHQIDYzd8Aq/d1fZQoaAZoCWgPQwif5Xlw9whkQJSGlFKUaBVN6ANoFkdAgNk+nAIppnV9lChoBmgJaA9DCBOaJJYUuWFAlIaUUpRoFU3oA2gWR0CA2tcAR02cdX2UKGgGaAloD0MIqfsApDamYkCUhpRSlGgVTegDaBZHQIDjKNOuaF51fZQoaAZoCWgPQwiAYI4ev1s3QJSGlFKUaBVL2WgWR0CA5soJiRW+dX2UKGgGaAloD0MIbf5fdWQ1Y0CUhpRSlGgVTegDaBZHQID9y11GLDR1fZQoaAZoCWgPQwj/CS5WVGRjQJSGlFKUaBVN6ANoFkdAgP33F1jiGXV9lChoBmgJaA9DCHRFKSFY+GJAlIaUUpRoFU3oA2gWR0CA/32/SH/MdX2UKGgGaAloD0MIuMt+3WmvYECUhpRSlGgVTegDaBZHQIEA1PnB+F11fZQoaAZoCWgPQwhnYroQqxteQJSGlFKUaBVN6ANoFkdAgQFKt5le4XV9lChoBmgJaA9DCIUi3c+pXmZAlIaUUpRoFU3oA2gWR0CBA2DIRywOdX2UKGgGaAloD0MI0NbBwV6rYkCUhpRSlGgVTegDaBZHQIEKPES/TLJ1fZQoaAZoCWgPQwgUsB2M2ChiQJSGlFKUaBVN6ANoFkdAgQz4ywfQr3V9lChoBmgJaA9DCJJbk27L4mNAlIaUUpRoFU3oA2gWR0CBDf1ie/YbdX2UKGgGaAloD0MI8s02NybBZECUhpRSlGgVTegDaBZHQIERGbqhUR51fZQoaAZoCWgPQwi86ZYd4nRkQJSGlFKUaBVN6ANoFkdAgRkBZQpF1HV9lChoBmgJaA9DCKpDboabkGJAlIaUUpRoFU3oA2gWR0CBHiCZnctYdX2UKGgGaAloD0MIeT9uv3yhYkCUhpRSlGgVTegDaBZHQIEhmxKQJX11fZQoaAZoCWgPQwiTV+cYkJRiQJSGlFKUaBVN6ANoFkdAgSPF7dBSk3V9lChoBmgJaA9DCJeuYBvxdDJAlIaUUpRoFUu9aBZHQIEk1g4Otnx1fZQoaAZoCWgPQwi3QliNJQlgQJSGlFKUaBVN6ANoFkdAgSxUsFt8/nV9lChoBmgJaA9DCEseT8sPBV5AlIaUUpRoFU3oA2gWR0CBMEBkI5YHdX2UKGgGaAloD0MIKGTnbWxWCUCUhpRSlGgVS9ZoFkdAgTMenZTQ3XV9lChoBmgJaA9DCCamC7F6vGFAlIaUUpRoFU3oA2gWR0CBR4OiFj/ddX2UKGgGaAloD0MIYthhTHoCZECUhpRSlGgVTegDaBZHQIFHr3wkPc11fZQoaAZoCWgPQwicNXhfletiQJSGlFKUaBVN6ANoFkdAgUk4rrgO0HV9lChoBmgJaA9DCCtpxTcUamBAlIaUUpRoFU3oA2gWR0CBSp9Q40djdX2UKGgGaAloD0MIl43O+SlnXECUhpRSlGgVTegDaBZHQIFLGMMqjJx1fZQoaAZoCWgPQwh3E3zTdD9jQJSGlFKUaBVN6ANoFkdAgU1T+ee4C3V9lChoBmgJaA9DCIALsmV5XWNAlIaUUpRoFU3oA2gWR0CBVMNQ0oBrdX2UKGgGaAloD0MIfR8OEqKAYkCUhpRSlGgVTegDaBZHQIFXjN8ma6V1fZQoaAZoCWgPQwggelImNSdlQJSGlFKUaBVN6ANoFkdAgViJWmxdIHV9lChoBmgJaA9DCCWxpNz9DGRAlIaUUpRoFU3oA2gWR0CBW4f7JnxsdX2UKGgGaAloD0MIOCwN/KjwZECUhpRSlGgVTegDaBZHQIFoxV6u4gB1fZQoaAZoCWgPQwjvU1VooNxwQJSGlFKUaBVN1wNoFkdAgWsjb8FY+3V9lChoBmgJaA9DCP1nzY8/uGZAlIaUUpRoFU3oA2gWR0CBbmoRZlnRdX2UKGgGaAloD0MIJA7ZQLqPYUCUhpRSlGgVTegDaBZHQIF3NDlYEGJ1fZQoaAZoCWgPQwip3a8C/ENiQJSGlFKUaBVN6ANoFkdAgXsyxRl6JXV9lChoBmgJaA9DCOc4twn35F5AlIaUUpRoFU3oA2gWR0CBfkAtnPE9dX2UKGgGaAloD0MIbr98smKoSkCUhpRSlGgVTRABaBZHQIGQ85Ke05V1fZQoaAZoCWgPQwjlnNhDe1BkQJSGlFKUaBVN6ANoFkdAgZRMI3R5T3V9lChoBmgJaA9DCFitTPilcV9AlIaUUpRoFU3oA2gWR0CBlHwlSjxkdX2UKGgGaAloD0MIRKURM/v7ZECUhpRSlGgVTegDaBZHQIGV+az/p+t1fZQoaAZoCWgPQwjhKeRKPapfQJSGlFKUaBVN6ANoFkdAgZdP9UCJXXV9lChoBmgJaA9DCA4sR8hA62RAlIaUUpRoFU3oA2gWR0CBl8maYu01dX2UKGgGaAloD0MI6j9rfvxEbkCUhpRSlGgVTUMBaBZHQIGYI6IWP911fZQoaAZoCWgPQwixMhr5PPBhQJSGlFKUaBVN6ANoFkdAgZnHWattAXV9lChoBmgJaA9DCEfH1ciuGGFAlIaUUpRoFU3oA2gWR0CBoEGKyfL+dX2UKGgGaAloD0MIpfljWps/ZECUhpRSlGgVTegDaBZHQIGixRQ79yd1fZQoaAZoCWgPQwhXCoFcYilgQJSGlFKUaBVN6ANoFkdAgaO+V9nbqXV9lChoBmgJaA9DCPMhqBq9D2RAlIaUUpRoFU3oA2gWR0CBpqOWjXWfdX2UKGgGaAloD0MIrP9zmC+FZECUhpRSlGgVTegDaBZHQIGz+Zy+6Ah1fZQoaAZoCWgPQwjNWgpI+7dgQJSGlFKUaBVN6ANoFkdAgbZqv/zasnV9lChoBmgJaA9DCIttUtFYqGBAlIaUUpRoFU3oA2gWR0CBudhPTG5udX2UKGgGaAloD0MIFR3J5T9vX0CUhpRSlGgVTegDaBZHQIHDfU6PsAx1fZQoaAZoCWgPQwhfJoqQOvFvQJSGlFKUaBVNfQJoFkdAgcm2c8TzunV9lChoBmgJaA9DCHi3skTnMGFAlIaUUpRoFU3oA2gWR0CB3FzuF6AwdX2UKGgGaAloD0MIMrCO4wetZUCUhpRSlGgVTegDaBZHQIHfSeumrKh1fZQoaAZoCWgPQwgrFyr/WstiQJSGlFKUaBVN6ANoFkdAgd91R+BpYnV9lChoBmgJaA9DCJhtp62RSGNAlIaUUpRoFU3oA2gWR0CB4OqjrRjSdX2UKGgGaAloD0MIvayJBb75X0CUhpRSlGgVTegDaBZHQIHiPv+fh/B1fZQoaAZoCWgPQwhX7C+7p2VjQJSGlFKUaBVN6ANoFkdAgeKuv2Xb/XV9lChoBmgJaA9DCPX1fM1yaGRAlIaUUpRoFU3oA2gWR0CB4wYcebNKdX2UKGgGaAloD0MISHAjZYupYkCUhpRSlGgVTegDaBZHQIHrYrlNlAh1fZQoaAZoCWgPQwinzw64rrhDQJSGlFKUaBVL0WgWR0CB7SCYkVvddX2UKGgGaAloD0MIHCRE+QKvYECUhpRSlGgVTegDaBZHQIHuCZUkv9N1fZQoaAZoCWgPQwiAngYMEkhlQJSGlFKUaBVN6ANoFkdAge722PT5PHV9lChoBmgJaA9DCAmmmlnLtGNAlIaUUpRoFU3oA2gWR0CB8cXBxgiNdX2UKGgGaAloD0MINiIYB5d1bUCUhpRSlGgVTTMBaBZHQIH0ilpGnXN1fZQoaAZoCWgPQwgJpS+EnFdmQJSGlFKUaBVN6ANoFkdAgf5RxcVxj3V9lChoBmgJaA9DCLQglPdxgmJAlIaUUpRoFU3oA2gWR0CCAI36Q/5ddX2UKGgGaAloD0MI3X2OjxZsYkCUhpRSlGgVTegDaBZHQIIDkxEfDDV1fZQoaAZoCWgPQwhLr83GSm5EQJSGlFKUaBVLy2gWR0CCBICEpRXPdX2UKGgGaAloD0MIYOgRo+cFYkCUhpRSlGgVTegDaBZHQIIL4oNNJvp1fZQoaAZoCWgPQwhortNIy/9iQJSGlFKUaBVN6ANoFkdAghHQ3PzFuXV9lChoBmgJaA9DCGuduByvrmFAlIaUUpRoFU3oA2gWR0CCI8Q3gk1NdX2UKGgGaAloD0MIkbkyqDbzYUCUhpRSlGgVTegDaBZHQIImoIldC3R1fZQoaAZoCWgPQwh6ck2BzFRgQJSGlFKUaBVN6ANoFkdAgibIXj2i+XV9lChoBmgJaA9DCFGE1O3s7GRAlIaUUpRoFU3oA2gWR0CCKWVrRBu5dX2UKGgGaAloD0MITFXa4prDYUCUhpRSlGgVTegDaBZHQIIp10NjLB91fZQoaAZoCWgPQwg3ixcLQ7ViQJSGlFKUaBVN6ANoFkdAgjMEZiuuBHV9lChoBmgJaA9DCKJ+F7bmu2VAlIaUUpRoFU3oA2gWR0CCNN+vyLAIdX2UKGgGaAloD0MIsB2M2CfA+T+UhpRSlGgVS+9oFkdAgjV5WaMJhXV9lChoBmgJaA9DCDRLAtTUSWBAlIaUUpRoFU3oA2gWR0CCNchEBsAOdX2UKGgGaAloD0MIa7bykn/nYkCUhpRSlGgVTegDaBZHQII2ux0MgEF1fZQoaAZoCWgPQwgzU1p/S1ZkQJSGlFKUaBVN6ANoFkdAgjx7zshPkHV9lChoBmgJaA9DCC43GOqwnGBAlIaUUpRoFU3oA2gWR0CCP4+9rXUZdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV3wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVi9Vc2Vycy9rYXJpbS9taW5pY29uZGEzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxWL1VzZXJzL2thcmltL21pbmljb25kYTMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "macOS-13.1-arm64-arm-64bit Darwin Kernel Version 22.2.0: Fri Nov 11 02:06:26 PST 2022; root:xnu-8792.61.2~4/RELEASE_ARM64_T8112", "Python": "3.10.8", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1", "GPU Enabled": "False", "Numpy": "1.23.5", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x1597a39a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x1597a3a30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x1597a3ac0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x1597a3b50>", "_build": "<function ActorCriticPolicy._build at 0x1597a3be0>", "forward": "<function ActorCriticPolicy.forward at 0x1597a3c70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x1597a3d00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x1597a3d90>", "_predict": "<function ActorCriticPolicy._predict at 0x1597a3e20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x1597a3eb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x1597a3f40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x1597ac040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x15979f100>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 10027008, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674585727478232000, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV3wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVi9Vc2Vycy9rYXJpbS9taW5pY29uZGEzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxWL1VzZXJzL2thcmltL21pbmljb25kYTMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOa3Mr0puGe6BpoXtH8AYC8/aR46NH+rMwAAgD8AAIA/GvbGPZNwcj8uAEg+36M9vxUteD6a2RE+AAAAAAAAAAB1/YC+xombPwLjAL/pXAy/PWMcv4xelb4AAAAAAAAAALMJnD32PDm6rsX3NwLC4jJYo1q7gzwTtwAAgD8AAIA/TX+NPXb5F7y49Jq+0zXlvUnnAT0S7cm9AACAPwAAgD9zrsU9B26rPpNAB731Yy6/gVLDPWKS4LwAAAAAAAAAAIDAS74K5H8/uLvOvhRhEL/GUdy+A0WovgAAAAAAAAAAZiSMve9Abj2lk889bm7LvmoEAD2+mZY9AAAAAAAAAABmc+A9dKiKPkBehb66gxq/8J/SPctvab4AAAAAAAAAACAGTL7sY8M+xnsyPpBZFL8So6++mDxxPgAAAAAAAAAAzaMkPfa6eLxmeQG+4nUTvAx6+zrpAgq+AACAPwAAgD9NZTw9exScN/aTDTjdyBEzqnXvOnAkKLcAAIA/AACAP00rOr0UPso71g54PGbzc75z+4S9hiefvAAAAAAAAAAAWhPCvXsHhTvlgEQ+zTGtvZGL6DwSURu/AAAAAAAAgD8zg5u6P/KyPgZFCDrBmzy/CVgsO+UqYr0AAAAAAAAAAG1nAb7CW1k+ehrEPo+YJb+CYxc+UrqWPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIF2ahnRMMdECUhpRSlIwBbJRLvIwBdJRHQLLn0I/7iyZ1fZQoaAZoCWgPQwjAIypU9wpzQJSGlFKUaBVLq2gWR0Cy59R11W8zdX2UKGgGaAloD0MINbdCWA1fcUCUhpRSlGgVS7ZoFkdAsufUgntv43V9lChoBmgJaA9DCPdXj/vWW3FAlIaUUpRoFUuiaBZHQLLn26Uqx1R1fZQoaAZoCWgPQwi7KlCLwf8+QJSGlFKUaBVLWGgWR0Cy591urIYFdX2UKGgGaAloD0MIy2d5HtzQb0CUhpRSlGgVS5BoFkdAsufwggX/HnV9lChoBmgJaA9DCIL917mpeHFAlIaUUpRoFUuRaBZHQLLn8i+L3sZ1fZQoaAZoCWgPQwik374O3PxzQJSGlFKUaBVLoWgWR0Cy5/usPrfMdX2UKGgGaAloD0MIf/j578H8cUCUhpRSlGgVS5JoFkdAsuf99YwIt3V9lChoBmgJaA9DCIP26uPhtHFAlIaUUpRoFUuSaBZHQLLoCoESuhd1fZQoaAZoCWgPQwj5hsJnq0BzQJSGlFKUaBVLxWgWR0Cy6A5KFqSHdX2UKGgGaAloD0MII/PIH4yEcUCUhpRSlGgVS7BoFkdAsugVuJk5InV9lChoBmgJaA9DCP3dO2pMb3NAlIaUUpRoFUubaBZHQLLoGJhOP/91fZQoaAZoCWgPQwiJmBJJdF9wQJSGlFKUaBVLp2gWR0Cy6BpJTVDsdX2UKGgGaAloD0MI1IGsp9afcECUhpRSlGgVS6RoFkdAsugbYFqzq3V9lChoBmgJaA9DCF9CBYcXIHNAlIaUUpRoFUudaBZHQLLoJ655JK91fZQoaAZoCWgPQwgMy59vSw5xQJSGlFKUaBVLl2gWR0Cy6C6Mm4RVdX2UKGgGaAloD0MI39xfPa5zcUCUhpRSlGgVS7ZoFkdAsugxU3n6mHV9lChoBmgJaA9DCG3mkNQCgHNAlIaUUpRoFUuwaBZHQLLoMh2nsLR1fZQoaAZoCWgPQwj5vrhUJf5yQJSGlFKUaBVLvGgWR0Cy6EAB5ooNdX2UKGgGaAloD0MIZ5lFKLZmQkCUhpRSlGgVS1toFkdAsuhKMIeHSHV9lChoBmgJaA9DCCzzVl1Hv3FAlIaUUpRoFUunaBZHQLLoTFCb+cZ1fZQoaAZoCWgPQwiKH2Pu2vFyQJSGlFKUaBVLuWgWR0Cy6FSfUWl/dX2UKGgGaAloD0MImiSWlLvQcUCUhpRSlGgVS6ZoFkdAsuhVP0qYq3V9lChoBmgJaA9DCLYPecsVMXJAlIaUUpRoFUuqaBZHQLLoWXSSeRR1fZQoaAZoCWgPQwja44V0+JBwQJSGlFKUaBVLlWgWR0Cy6FqjFhoedX2UKGgGaAloD0MInNzvUBSSc0CUhpRSlGgVS6VoFkdAsuhtc8kleHV9lChoBmgJaA9DCCqLwi6K7G9AlIaUUpRoFUujaBZHQLLob0iQkop1fZQoaAZoCWgPQwgvMgG/RrNyQJSGlFKUaBVLqWgWR0Cy6HXRPXTWdX2UKGgGaAloD0MIUu3T8RgkckCUhpRSlGgVS5VoFkdAsuh/jo6jnHV9lChoBmgJaA9DCP8gkiGHYnNAlIaUUpRoFUvWaBZHQLLognjABT51fZQoaAZoCWgPQwgn+KbpMxFzQJSGlFKUaBVLrWgWR0Cy6IXYtg8bdX2UKGgGaAloD0MIfbCMDZ3PckCUhpRSlGgVS6FoFkdAsuiIr3CbdHV9lChoBmgJaA9DCEuwOJz5n09AlIaUUpRoFUtdaBZHQLLojViF0xN1fZQoaAZoCWgPQwiOHr+3afZxQJSGlFKUaBVLhWgWR0Cy6JIikftAdX2UKGgGaAloD0MIwhVQqOdUckCUhpRSlGgVS7RoFkdAsuiS1og3cnV9lChoBmgJaA9DCGtkV1oG+HBAlIaUUpRoFUugaBZHQLLoljiGWUt1fZQoaAZoCWgPQwifOetTDidlQJSGlFKUaBVN6ANoFkdAsuiie/YapHV9lChoBmgJaA9DCMjvbfpzBHRAlIaUUpRoFUunaBZHQLLoreGO+7F1fZQoaAZoCWgPQwhiFW9kHgFEQJSGlFKUaBVLV2gWR0Cy6K7W3BpIdX2UKGgGaAloD0MIlZwTeyhVc0CUhpRSlGgVS7poFkdAsuivYL9deXV9lChoBmgJaA9DCOQSRx5IyHJAlIaUUpRoFUvAaBZHQLLouMWGh251fZQoaAZoCWgPQwgdzCbAcF9zQJSGlFKUaBVLumgWR0Cy6LpYxL00dX2UKGgGaAloD0MIbk4lA0DZcECUhpRSlGgVS5toFkdAsui+cmShanV9lChoBmgJaA9DCG7ajNMQa25AlIaUUpRoFUuTaBZHQLLowAckt291fZQoaAZoCWgPQwiFBfcDnkdyQJSGlFKUaBVLi2gWR0Cy6MOpGWledX2UKGgGaAloD0MIndZtUDtMcUCUhpRSlGgVS69oFkdAsujFprULD3V9lChoBmgJaA9DCFk2c0jqNXFAlIaUUpRoFUucaBZHQLLoz9itq591fZQoaAZoCWgPQwheu7Th8IZwQJSGlFKUaBVLiGgWR0Cy6NH/xUeddX2UKGgGaAloD0MIMBNFSF0Qc0CUhpRSlGgVS6JoFkdAsujVPXTVlXV9lChoBmgJaA9DCLK9FvSeK3NAlIaUUpRoFUunaBZHQLLo4QSi/PB1fZQoaAZoCWgPQwgN/n4xW4JyQJSGlFKUaBVLuGgWR0Cy6OP7rLQpdX2UKGgGaAloD0MI0qxsH/LFcUCUhpRSlGgVS75oFkdAsujvXTVlPXV9lChoBmgJaA9DCE0tW+tL3nBAlIaUUpRoFUuraBZHQLLo8b83uNR1fZQoaAZoCWgPQwg3T3XIzdBDQJSGlFKUaBVLZGgWR0Cy6PQZXMhYdX2UKGgGaAloD0MIlnZqLjcUcUCUhpRSlGgVS6BoFkdAsuj3y3CsO3V9lChoBmgJaA9DCPevrDSpeHJAlIaUUpRoFUt+aBZHQLLo+dOIqLF1fZQoaAZoCWgPQwiN0Tqq2mNwQJSGlFKUaBVLk2gWR0Cy6PwEMb3odX2UKGgGaAloD0MIjspN1BLuckCUhpRSlGgVS65oFkdAsuj9eu3c6HV9lChoBmgJaA9DCK0Yrg6AEHNAlIaUUpRoFUvCaBZHQLLpB2L5ylx1fZQoaAZoCWgPQwiYvWw7reNzQJSGlFKUaBVLtmgWR0Cy6RHxe9i+dX2UKGgGaAloD0MIbXNjesLncUCUhpRSlGgVS6toFkdAsukSmO2iL3V9lChoBmgJaA9DCLqj/+VauXBAlIaUUpRoFUuKaBZHQLLpFc+aBqd1fZQoaAZoCWgPQwgtexLYnDxyQJSGlFKUaBVL02gWR0Cy6Rr0OEuhdX2UKGgGaAloD0MInigJiXSEcECUhpRSlGgVS6doFkdAsukduGbkO3V9lChoBmgJaA9DCFHdXPxtDXJAlIaUUpRoFUuNaBZHQLLpJZTyaux1fZQoaAZoCWgPQwiJQsu6vxtxQJSGlFKUaBVLlmgWR0Cy6ScIzFdcdX2UKGgGaAloD0MICI7LuKkYckCUhpRSlGgVS8BoFkdAsukra/RE4XV9lChoBmgJaA9DCOqu7ILBeXBAlIaUUpRoFUuJaBZHQLLpMx8UmD11fZQoaAZoCWgPQwghy4KJvyhzQJSGlFKUaBVLjmgWR0Cy6T9Qj2SMdX2UKGgGaAloD0MIpfYi2s7CcUCUhpRSlGgVS69oFkdAsulCznied3V9lChoBmgJaA9DCC0mNh8XsXJAlIaUUpRoFUuqaBZHQLLpTCCSRr91fZQoaAZoCWgPQwg7Vik9E05xQJSGlFKUaBVLsmgWR0Cy6U41xbSrdX2UKGgGaAloD0MI7Es2Hiw7c0CUhpRSlGgVS8FoFkdAsulPZ6D5CXV9lChoBmgJaA9DCIviVda2mHJAlIaUUpRoFUu5aBZHQLLpWCF9KEp1fZQoaAZoCWgPQwithsQ9lldzQJSGlFKUaBVLpmgWR0Cy6VobOu7pdX2UKGgGaAloD0MI/N6mP/vZc0CUhpRSlGgVS5xoFkdAsulgl9jPOnV9lChoBmgJaA9DCKxY/KawW3NAlIaUUpRoFUuhaBZHQLLpbHerMkh1fZQoaAZoCWgPQwhkrgyqDWtzQJSGlFKUaBVLtGgWR0Cy6Wxp1zQvdX2UKGgGaAloD0MI8lzfhwNqc0CUhpRSlGgVS65oFkdAsultk078vXV9lChoBmgJaA9DCKDDfHnB7XNAlIaUUpRoFUuoaBZHQLLpcox59mZ1fZQoaAZoCWgPQwjRdkzdlblxQJSGlFKUaBVLimgWR0Cy6XqErXlKdX2UKGgGaAloD0MIB9Fa0SYVc0CUhpRSlGgVS6JoFkdAsul+V9nbqXV9lChoBmgJaA9DCCNm9nnMDnJAlIaUUpRoFUutaBZHQLLpfx9G7SR1fZQoaAZoCWgPQwiAuKtXUWZyQJSGlFKUaBVLsWgWR0Cy6X+wPiDNdX2UKGgGaAloD0MIu/HuyFhtc0CUhpRSlGgVS6loFkdAsumUC6pYLnV9lChoBmgJaA9DCGFUUidgW3NAlIaUUpRoFUuuaBZHQLLpmcebNKR1fZQoaAZoCWgPQwh0mZoE731xQJSGlFKUaBVLpGgWR0Cy6Z/029+PdX2UKGgGaAloD0MIfPDapU3LcUCUhpRSlGgVS6hoFkdAsumg4hllLHV9lChoBmgJaA9DCAVqMXhYyXFAlIaUUpRoFUuvaBZHQLLpoo5PuXx1fZQoaAZoCWgPQwh3E3zTdAZyQJSGlFKUaBVLnGgWR0Cy6aQ7cO9WdX2UKGgGaAloD0MIIXU7+0qOcECUhpRSlGgVS5loFkdAsumkkdFOPHV9lChoBmgJaA9DCCwOZ3511XBAlIaUUpRoFUuNaBZHQLLpropQUHp1fZQoaAZoCWgPQwjWc9L7hjxyQJSGlFKUaBVLk2gWR0Cy6bIp6QeWdX2UKGgGaAloD0MIGY18XrEcckCUhpRSlGgVS5loFkdAsum0AfdRBXV9lChoBmgJaA9DCFbUYBqGcHNAlIaUUpRoFUu1aBZHQLLptiKziS91fZQoaAZoCWgPQwgPt0PD4jlvQJSGlFKUaBVLj2gWR0Cy6bxwl0HRdX2UKGgGaAloD0MIM6SK4tVacECUhpRSlGgVS7FoFkdAsunEz/IbO3V9lChoBmgJaA9DCMxCO6dZT3FAlIaUUpRoFUudaBZHQLLpx1V5rxl1fZQoaAZoCWgPQwhYIHpS5rZzQJSGlFKUaBVLnmgWR0Cy6cdBF/hEdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1224, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV3wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVi9Vc2Vycy9rYXJpbS9taW5pY29uZGEzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxWL1VzZXJzL2thcmltL21pbmljb25kYTMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "macOS-13.1-arm64-arm-64bit Darwin Kernel Version 22.2.0: Fri Nov 11 02:06:26 PST 2022; root:xnu-8792.61.2~4/RELEASE_ARM64_T8112", "Python": "3.10.8", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1", "GPU Enabled": "False", "Numpy": "1.23.5", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:17c88d26d9a6c2be613bb63e7cab49dd9353edfb989d4358836e8889b9ab5e3f
3
- size 146074
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2cf3b9d6f0c728600bfaece50fae8d88e5a22ec7d88b9ab4104d33a0fae1205
3
+ size 146869
ppo-LunarLander-v2/data CHANGED
@@ -4,26 +4,26 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x15f8a3640>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x15f8a36d0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x15f8a3760>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x15f8a37f0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x15f8a3880>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x15f8a3910>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x15f8a39a0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x15f8a3a30>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x15f8a3ac0>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x15f8a3b50>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x15f8a3be0>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x15f8a3c70>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x15f89e0c0>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
  "observation_space": {
25
  ":type:": "<class 'gym.spaces.box.Box'>",
26
- ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
  "dtype": "float32",
28
  "_shape": [
29
  8
@@ -36,26 +36,29 @@
36
  },
37
  "action_space": {
38
  ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
- ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
  "n": 4,
41
  "_shape": [],
42
  "dtype": "int64",
43
  "_np_random": null
44
  },
45
  "n_envs": 16,
46
- "num_timesteps": 1015808,
47
- "_total_timesteps": 1000000,
48
  "_num_timesteps_at_start": 0,
49
  "seed": null,
50
  "action_noise": null,
51
- "start_time": 1674569090770335000,
52
  "learning_rate": 0.0003,
53
  "tensorboard_log": null,
54
  "lr_schedule": {
55
  ":type:": "<class 'function'>",
56
  ":serialized:": "gAWV3wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVi9Vc2Vycy9rYXJpbS9taW5pY29uZGEzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxWL1VzZXJzL2thcmltL21pbmljb25kYTMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
57
  },
58
- "_last_obs": null,
 
 
 
59
  "_last_episode_starts": {
60
  ":type:": "<class 'numpy.ndarray'>",
61
  ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
@@ -64,17 +67,17 @@
64
  "_episode_num": 0,
65
  "use_sde": false,
66
  "sde_sample_freq": -1,
67
- "_current_progress_remaining": -0.015808000000000044,
68
  "ep_info_buffer": {
69
  ":type:": "<class 'collections.deque'>",
70
- ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIKH/3jpoIYkCUhpRSlIwBbJRN6AOMAXSUR0CAuRcL0BfbdX2UKGgGaAloD0MIiEojZnZNYkCUhpRSlGgVTegDaBZHQIC5P6wdKdx1fZQoaAZoCWgPQwjCFOXS+BZgQJSGlFKUaBVN6ANoFkdAgLqQvHtF8XV9lChoBmgJaA9DCDqwHCEDgGBAlIaUUpRoFU3oA2gWR0CAu76uW8h+dX2UKGgGaAloD0MI4ZaPpCTdZECUhpRSlGgVTegDaBZHQIC8JXIU8FJ1fZQoaAZoCWgPQwjeyafHNllhQJSGlFKUaBVN6ANoFkdAgLyscp9ZzXV9lChoBmgJaA9DCHoX78dtrGJAlIaUUpRoFU3oA2gWR0CAvehdt2s8dX2UKGgGaAloD0MIqDrkZrgEXkCUhpRSlGgVTegDaBZHQIDDdYSxqwh1fZQoaAZoCWgPQwgNjpJX55RqQJSGlFKUaBVNawFoFkdAgMWbMHKOk3V9lChoBmgJaA9DCKGGb2HdDWRAlIaUUpRoFU3oA2gWR0CAxmq814xDdX2UKGgGaAloD0MI/vM0YBAWY0CUhpRSlGgVTegDaBZHQIDP5K3/gix1fZQoaAZoCWgPQwgukQvO4GcrQJSGlFKUaBVNDgFoFkdAgNC9WZJCjXV9lChoBmgJaA9DCGFPO/y1WmNAlIaUUpRoFU3oA2gWR0CA1X8ohIOIdX2UKGgGaAloD0MI1LoNar+/YkCUhpRSlGgVTegDaBZHQIDYzd8Aq/d1fZQoaAZoCWgPQwif5Xlw9whkQJSGlFKUaBVN6ANoFkdAgNk+nAIppnV9lChoBmgJaA9DCBOaJJYUuWFAlIaUUpRoFU3oA2gWR0CA2tcAR02cdX2UKGgGaAloD0MIqfsApDamYkCUhpRSlGgVTegDaBZHQIDjKNOuaF51fZQoaAZoCWgPQwiAYI4ev1s3QJSGlFKUaBVL2WgWR0CA5soJiRW+dX2UKGgGaAloD0MIbf5fdWQ1Y0CUhpRSlGgVTegDaBZHQID9y11GLDR1fZQoaAZoCWgPQwj/CS5WVGRjQJSGlFKUaBVN6ANoFkdAgP33F1jiGXV9lChoBmgJaA9DCHRFKSFY+GJAlIaUUpRoFU3oA2gWR0CA/32/SH/MdX2UKGgGaAloD0MIuMt+3WmvYECUhpRSlGgVTegDaBZHQIEA1PnB+F11fZQoaAZoCWgPQwhnYroQqxteQJSGlFKUaBVN6ANoFkdAgQFKt5le4XV9lChoBmgJaA9DCIUi3c+pXmZAlIaUUpRoFU3oA2gWR0CBA2DIRywOdX2UKGgGaAloD0MI0NbBwV6rYkCUhpRSlGgVTegDaBZHQIEKPES/TLJ1fZQoaAZoCWgPQwgUsB2M2ChiQJSGlFKUaBVN6ANoFkdAgQz4ywfQr3V9lChoBmgJaA9DCJJbk27L4mNAlIaUUpRoFU3oA2gWR0CBDf1ie/YbdX2UKGgGaAloD0MI8s02NybBZECUhpRSlGgVTegDaBZHQIERGbqhUR51fZQoaAZoCWgPQwi86ZYd4nRkQJSGlFKUaBVN6ANoFkdAgRkBZQpF1HV9lChoBmgJaA9DCKpDboabkGJAlIaUUpRoFU3oA2gWR0CBHiCZnctYdX2UKGgGaAloD0MIeT9uv3yhYkCUhpRSlGgVTegDaBZHQIEhmxKQJX11fZQoaAZoCWgPQwiTV+cYkJRiQJSGlFKUaBVN6ANoFkdAgSPF7dBSk3V9lChoBmgJaA9DCJeuYBvxdDJAlIaUUpRoFUu9aBZHQIEk1g4Otnx1fZQoaAZoCWgPQwi3QliNJQlgQJSGlFKUaBVN6ANoFkdAgSxUsFt8/nV9lChoBmgJaA9DCEseT8sPBV5AlIaUUpRoFU3oA2gWR0CBMEBkI5YHdX2UKGgGaAloD0MIKGTnbWxWCUCUhpRSlGgVS9ZoFkdAgTMenZTQ3XV9lChoBmgJaA9DCCamC7F6vGFAlIaUUpRoFU3oA2gWR0CBR4OiFj/ddX2UKGgGaAloD0MIYthhTHoCZECUhpRSlGgVTegDaBZHQIFHr3wkPc11fZQoaAZoCWgPQwicNXhfletiQJSGlFKUaBVN6ANoFkdAgUk4rrgO0HV9lChoBmgJaA9DCCtpxTcUamBAlIaUUpRoFU3oA2gWR0CBSp9Q40djdX2UKGgGaAloD0MIl43O+SlnXECUhpRSlGgVTegDaBZHQIFLGMMqjJx1fZQoaAZoCWgPQwh3E3zTdD9jQJSGlFKUaBVN6ANoFkdAgU1T+ee4C3V9lChoBmgJaA9DCIALsmV5XWNAlIaUUpRoFU3oA2gWR0CBVMNQ0oBrdX2UKGgGaAloD0MIfR8OEqKAYkCUhpRSlGgVTegDaBZHQIFXjN8ma6V1fZQoaAZoCWgPQwggelImNSdlQJSGlFKUaBVN6ANoFkdAgViJWmxdIHV9lChoBmgJaA9DCCWxpNz9DGRAlIaUUpRoFU3oA2gWR0CBW4f7JnxsdX2UKGgGaAloD0MIOCwN/KjwZECUhpRSlGgVTegDaBZHQIFoxV6u4gB1fZQoaAZoCWgPQwjvU1VooNxwQJSGlFKUaBVN1wNoFkdAgWsjb8FY+3V9lChoBmgJaA9DCP1nzY8/uGZAlIaUUpRoFU3oA2gWR0CBbmoRZlnRdX2UKGgGaAloD0MIJA7ZQLqPYUCUhpRSlGgVTegDaBZHQIF3NDlYEGJ1fZQoaAZoCWgPQwip3a8C/ENiQJSGlFKUaBVN6ANoFkdAgXsyxRl6JXV9lChoBmgJaA9DCOc4twn35F5AlIaUUpRoFU3oA2gWR0CBfkAtnPE9dX2UKGgGaAloD0MIbr98smKoSkCUhpRSlGgVTRABaBZHQIGQ85Ke05V1fZQoaAZoCWgPQwjlnNhDe1BkQJSGlFKUaBVN6ANoFkdAgZRMI3R5T3V9lChoBmgJaA9DCFitTPilcV9AlIaUUpRoFU3oA2gWR0CBlHwlSjxkdX2UKGgGaAloD0MIRKURM/v7ZECUhpRSlGgVTegDaBZHQIGV+az/p+t1fZQoaAZoCWgPQwjhKeRKPapfQJSGlFKUaBVN6ANoFkdAgZdP9UCJXXV9lChoBmgJaA9DCA4sR8hA62RAlIaUUpRoFU3oA2gWR0CBl8maYu01dX2UKGgGaAloD0MI6j9rfvxEbkCUhpRSlGgVTUMBaBZHQIGYI6IWP911fZQoaAZoCWgPQwixMhr5PPBhQJSGlFKUaBVN6ANoFkdAgZnHWattAXV9lChoBmgJaA9DCEfH1ciuGGFAlIaUUpRoFU3oA2gWR0CBoEGKyfL+dX2UKGgGaAloD0MIpfljWps/ZECUhpRSlGgVTegDaBZHQIGixRQ79yd1fZQoaAZoCWgPQwhXCoFcYilgQJSGlFKUaBVN6ANoFkdAgaO+V9nbqXV9lChoBmgJaA9DCPMhqBq9D2RAlIaUUpRoFU3oA2gWR0CBpqOWjXWfdX2UKGgGaAloD0MIrP9zmC+FZECUhpRSlGgVTegDaBZHQIGz+Zy+6Ah1fZQoaAZoCWgPQwjNWgpI+7dgQJSGlFKUaBVN6ANoFkdAgbZqv/zasnV9lChoBmgJaA9DCIttUtFYqGBAlIaUUpRoFU3oA2gWR0CBudhPTG5udX2UKGgGaAloD0MIFR3J5T9vX0CUhpRSlGgVTegDaBZHQIHDfU6PsAx1fZQoaAZoCWgPQwhfJoqQOvFvQJSGlFKUaBVNfQJoFkdAgcm2c8TzunV9lChoBmgJaA9DCHi3skTnMGFAlIaUUpRoFU3oA2gWR0CB3FzuF6AwdX2UKGgGaAloD0MIMrCO4wetZUCUhpRSlGgVTegDaBZHQIHfSeumrKh1fZQoaAZoCWgPQwgrFyr/WstiQJSGlFKUaBVN6ANoFkdAgd91R+BpYnV9lChoBmgJaA9DCJhtp62RSGNAlIaUUpRoFU3oA2gWR0CB4OqjrRjSdX2UKGgGaAloD0MIvayJBb75X0CUhpRSlGgVTegDaBZHQIHiPv+fh/B1fZQoaAZoCWgPQwhX7C+7p2VjQJSGlFKUaBVN6ANoFkdAgeKuv2Xb/XV9lChoBmgJaA9DCPX1fM1yaGRAlIaUUpRoFU3oA2gWR0CB4wYcebNKdX2UKGgGaAloD0MISHAjZYupYkCUhpRSlGgVTegDaBZHQIHrYrlNlAh1fZQoaAZoCWgPQwinzw64rrhDQJSGlFKUaBVL0WgWR0CB7SCYkVvddX2UKGgGaAloD0MIHCRE+QKvYECUhpRSlGgVTegDaBZHQIHuCZUkv9N1fZQoaAZoCWgPQwiAngYMEkhlQJSGlFKUaBVN6ANoFkdAge722PT5PHV9lChoBmgJaA9DCAmmmlnLtGNAlIaUUpRoFU3oA2gWR0CB8cXBxgiNdX2UKGgGaAloD0MINiIYB5d1bUCUhpRSlGgVTTMBaBZHQIH0ilpGnXN1fZQoaAZoCWgPQwgJpS+EnFdmQJSGlFKUaBVN6ANoFkdAgf5RxcVxj3V9lChoBmgJaA9DCLQglPdxgmJAlIaUUpRoFU3oA2gWR0CCAI36Q/5ddX2UKGgGaAloD0MI3X2OjxZsYkCUhpRSlGgVTegDaBZHQIIDkxEfDDV1fZQoaAZoCWgPQwhLr83GSm5EQJSGlFKUaBVLy2gWR0CCBICEpRXPdX2UKGgGaAloD0MIYOgRo+cFYkCUhpRSlGgVTegDaBZHQIIL4oNNJvp1fZQoaAZoCWgPQwhortNIy/9iQJSGlFKUaBVN6ANoFkdAghHQ3PzFuXV9lChoBmgJaA9DCGuduByvrmFAlIaUUpRoFU3oA2gWR0CCI8Q3gk1NdX2UKGgGaAloD0MIkbkyqDbzYUCUhpRSlGgVTegDaBZHQIImoIldC3R1fZQoaAZoCWgPQwh6ck2BzFRgQJSGlFKUaBVN6ANoFkdAgibIXj2i+XV9lChoBmgJaA9DCFGE1O3s7GRAlIaUUpRoFU3oA2gWR0CCKWVrRBu5dX2UKGgGaAloD0MITFXa4prDYUCUhpRSlGgVTegDaBZHQIIp10NjLB91fZQoaAZoCWgPQwg3ixcLQ7ViQJSGlFKUaBVN6ANoFkdAgjMEZiuuBHV9lChoBmgJaA9DCKJ+F7bmu2VAlIaUUpRoFU3oA2gWR0CCNN+vyLAIdX2UKGgGaAloD0MIsB2M2CfA+T+UhpRSlGgVS+9oFkdAgjV5WaMJhXV9lChoBmgJaA9DCDRLAtTUSWBAlIaUUpRoFU3oA2gWR0CCNchEBsAOdX2UKGgGaAloD0MIa7bykn/nYkCUhpRSlGgVTegDaBZHQII2ux0MgEF1fZQoaAZoCWgPQwgzU1p/S1ZkQJSGlFKUaBVN6ANoFkdAgjx7zshPkHV9lChoBmgJaA9DCC43GOqwnGBAlIaUUpRoFU3oA2gWR0CCP4+9rXUZdWUu"
71
  },
72
  "ep_success_buffer": {
73
  ":type:": "<class 'collections.deque'>",
74
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
75
  },
76
- "_n_updates": 248,
77
- "n_steps": 1024,
78
  "gamma": 0.99,
79
  "gae_lambda": 0.98,
80
  "ent_coef": 0.01,
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x1597a39a0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x1597a3a30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x1597a3ac0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x1597a3b50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x1597a3be0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x1597a3c70>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x1597a3d00>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x1597a3d90>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x1597a3e20>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x1597a3eb0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x1597a3f40>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x1597ac040>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x15979f100>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
  "observation_space": {
25
  ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
  "dtype": "float32",
28
  "_shape": [
29
  8
 
36
  },
37
  "action_space": {
38
  ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
  "n": 4,
41
  "_shape": [],
42
  "dtype": "int64",
43
  "_np_random": null
44
  },
45
  "n_envs": 16,
46
+ "num_timesteps": 10027008,
47
+ "_total_timesteps": 10000000,
48
  "_num_timesteps_at_start": 0,
49
  "seed": null,
50
  "action_noise": null,
51
+ "start_time": 1674585727478232000,
52
  "learning_rate": 0.0003,
53
  "tensorboard_log": null,
54
  "lr_schedule": {
55
  ":type:": "<class 'function'>",
56
  ":serialized:": "gAWV3wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMVi9Vc2Vycy9rYXJpbS9taW5pY29uZGEzL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxWL1VzZXJzL2thcmltL21pbmljb25kYTMvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
57
  },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOa3Mr0puGe6BpoXtH8AYC8/aR46NH+rMwAAgD8AAIA/GvbGPZNwcj8uAEg+36M9vxUteD6a2RE+AAAAAAAAAAB1/YC+xombPwLjAL/pXAy/PWMcv4xelb4AAAAAAAAAALMJnD32PDm6rsX3NwLC4jJYo1q7gzwTtwAAgD8AAIA/TX+NPXb5F7y49Jq+0zXlvUnnAT0S7cm9AACAPwAAgD9zrsU9B26rPpNAB731Yy6/gVLDPWKS4LwAAAAAAAAAAIDAS74K5H8/uLvOvhRhEL/GUdy+A0WovgAAAAAAAAAAZiSMve9Abj2lk889bm7LvmoEAD2+mZY9AAAAAAAAAABmc+A9dKiKPkBehb66gxq/8J/SPctvab4AAAAAAAAAACAGTL7sY8M+xnsyPpBZFL8So6++mDxxPgAAAAAAAAAAzaMkPfa6eLxmeQG+4nUTvAx6+zrpAgq+AACAPwAAgD9NZTw9exScN/aTDTjdyBEzqnXvOnAkKLcAAIA/AACAP00rOr0UPso71g54PGbzc75z+4S9hiefvAAAAAAAAAAAWhPCvXsHhTvlgEQ+zTGtvZGL6DwSURu/AAAAAAAAgD8zg5u6P/KyPgZFCDrBmzy/CVgsO+UqYr0AAAAAAAAAAG1nAb7CW1k+ehrEPo+YJb+CYxc+UrqWPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
  "_last_episode_starts": {
63
  ":type:": "<class 'numpy.ndarray'>",
64
  ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
 
67
  "_episode_num": 0,
68
  "use_sde": false,
69
  "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.0027007999999999477,
71
  "ep_info_buffer": {
72
  ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIF2ahnRMMdECUhpRSlIwBbJRLvIwBdJRHQLLn0I/7iyZ1fZQoaAZoCWgPQwjAIypU9wpzQJSGlFKUaBVLq2gWR0Cy59R11W8zdX2UKGgGaAloD0MINbdCWA1fcUCUhpRSlGgVS7ZoFkdAsufUgntv43V9lChoBmgJaA9DCPdXj/vWW3FAlIaUUpRoFUuiaBZHQLLn26Uqx1R1fZQoaAZoCWgPQwi7KlCLwf8+QJSGlFKUaBVLWGgWR0Cy591urIYFdX2UKGgGaAloD0MIy2d5HtzQb0CUhpRSlGgVS5BoFkdAsufwggX/HnV9lChoBmgJaA9DCIL917mpeHFAlIaUUpRoFUuRaBZHQLLn8i+L3sZ1fZQoaAZoCWgPQwik374O3PxzQJSGlFKUaBVLoWgWR0Cy5/usPrfMdX2UKGgGaAloD0MIf/j578H8cUCUhpRSlGgVS5JoFkdAsuf99YwIt3V9lChoBmgJaA9DCIP26uPhtHFAlIaUUpRoFUuSaBZHQLLoCoESuhd1fZQoaAZoCWgPQwj5hsJnq0BzQJSGlFKUaBVLxWgWR0Cy6A5KFqSHdX2UKGgGaAloD0MII/PIH4yEcUCUhpRSlGgVS7BoFkdAsugVuJk5InV9lChoBmgJaA9DCP3dO2pMb3NAlIaUUpRoFUubaBZHQLLoGJhOP/91fZQoaAZoCWgPQwiJmBJJdF9wQJSGlFKUaBVLp2gWR0Cy6BpJTVDsdX2UKGgGaAloD0MI1IGsp9afcECUhpRSlGgVS6RoFkdAsugbYFqzq3V9lChoBmgJaA9DCF9CBYcXIHNAlIaUUpRoFUudaBZHQLLoJ655JK91fZQoaAZoCWgPQwgMy59vSw5xQJSGlFKUaBVLl2gWR0Cy6C6Mm4RVdX2UKGgGaAloD0MI39xfPa5zcUCUhpRSlGgVS7ZoFkdAsugxU3n6mHV9lChoBmgJaA9DCG3mkNQCgHNAlIaUUpRoFUuwaBZHQLLoMh2nsLR1fZQoaAZoCWgPQwj5vrhUJf5yQJSGlFKUaBVLvGgWR0Cy6EAB5ooNdX2UKGgGaAloD0MIZ5lFKLZmQkCUhpRSlGgVS1toFkdAsuhKMIeHSHV9lChoBmgJaA9DCCzzVl1Hv3FAlIaUUpRoFUunaBZHQLLoTFCb+cZ1fZQoaAZoCWgPQwiKH2Pu2vFyQJSGlFKUaBVLuWgWR0Cy6FSfUWl/dX2UKGgGaAloD0MImiSWlLvQcUCUhpRSlGgVS6ZoFkdAsuhVP0qYq3V9lChoBmgJaA9DCLYPecsVMXJAlIaUUpRoFUuqaBZHQLLoWXSSeRR1fZQoaAZoCWgPQwja44V0+JBwQJSGlFKUaBVLlWgWR0Cy6FqjFhoedX2UKGgGaAloD0MInNzvUBSSc0CUhpRSlGgVS6VoFkdAsuhtc8kleHV9lChoBmgJaA9DCCqLwi6K7G9AlIaUUpRoFUujaBZHQLLob0iQkop1fZQoaAZoCWgPQwgvMgG/RrNyQJSGlFKUaBVLqWgWR0Cy6HXRPXTWdX2UKGgGaAloD0MIUu3T8RgkckCUhpRSlGgVS5VoFkdAsuh/jo6jnHV9lChoBmgJaA9DCP8gkiGHYnNAlIaUUpRoFUvWaBZHQLLognjABT51fZQoaAZoCWgPQwgn+KbpMxFzQJSGlFKUaBVLrWgWR0Cy6IXYtg8bdX2UKGgGaAloD0MIfbCMDZ3PckCUhpRSlGgVS6FoFkdAsuiIr3CbdHV9lChoBmgJaA9DCEuwOJz5n09AlIaUUpRoFUtdaBZHQLLojViF0xN1fZQoaAZoCWgPQwiOHr+3afZxQJSGlFKUaBVLhWgWR0Cy6JIikftAdX2UKGgGaAloD0MIwhVQqOdUckCUhpRSlGgVS7RoFkdAsuiS1og3cnV9lChoBmgJaA9DCGtkV1oG+HBAlIaUUpRoFUugaBZHQLLoljiGWUt1fZQoaAZoCWgPQwifOetTDidlQJSGlFKUaBVN6ANoFkdAsuiie/YapHV9lChoBmgJaA9DCMjvbfpzBHRAlIaUUpRoFUunaBZHQLLoreGO+7F1fZQoaAZoCWgPQwhiFW9kHgFEQJSGlFKUaBVLV2gWR0Cy6K7W3BpIdX2UKGgGaAloD0MIlZwTeyhVc0CUhpRSlGgVS7poFkdAsuivYL9deXV9lChoBmgJaA9DCOQSRx5IyHJAlIaUUpRoFUvAaBZHQLLouMWGh251fZQoaAZoCWgPQwgdzCbAcF9zQJSGlFKUaBVLumgWR0Cy6LpYxL00dX2UKGgGaAloD0MIbk4lA0DZcECUhpRSlGgVS5toFkdAsui+cmShanV9lChoBmgJaA9DCG7ajNMQa25AlIaUUpRoFUuTaBZHQLLowAckt291fZQoaAZoCWgPQwiFBfcDnkdyQJSGlFKUaBVLi2gWR0Cy6MOpGWledX2UKGgGaAloD0MIndZtUDtMcUCUhpRSlGgVS69oFkdAsujFprULD3V9lChoBmgJaA9DCFk2c0jqNXFAlIaUUpRoFUucaBZHQLLoz9itq591fZQoaAZoCWgPQwheu7Th8IZwQJSGlFKUaBVLiGgWR0Cy6NH/xUeddX2UKGgGaAloD0MIMBNFSF0Qc0CUhpRSlGgVS6JoFkdAsujVPXTVlXV9lChoBmgJaA9DCLK9FvSeK3NAlIaUUpRoFUunaBZHQLLo4QSi/PB1fZQoaAZoCWgPQwgN/n4xW4JyQJSGlFKUaBVLuGgWR0Cy6OP7rLQpdX2UKGgGaAloD0MI0qxsH/LFcUCUhpRSlGgVS75oFkdAsujvXTVlPXV9lChoBmgJaA9DCE0tW+tL3nBAlIaUUpRoFUuraBZHQLLo8b83uNR1fZQoaAZoCWgPQwg3T3XIzdBDQJSGlFKUaBVLZGgWR0Cy6PQZXMhYdX2UKGgGaAloD0MIlnZqLjcUcUCUhpRSlGgVS6BoFkdAsuj3y3CsO3V9lChoBmgJaA9DCPevrDSpeHJAlIaUUpRoFUt+aBZHQLLo+dOIqLF1fZQoaAZoCWgPQwiN0Tqq2mNwQJSGlFKUaBVLk2gWR0Cy6PwEMb3odX2UKGgGaAloD0MIjspN1BLuckCUhpRSlGgVS65oFkdAsuj9eu3c6HV9lChoBmgJaA9DCK0Yrg6AEHNAlIaUUpRoFUvCaBZHQLLpB2L5ylx1fZQoaAZoCWgPQwiYvWw7reNzQJSGlFKUaBVLtmgWR0Cy6RHxe9i+dX2UKGgGaAloD0MIbXNjesLncUCUhpRSlGgVS6toFkdAsukSmO2iL3V9lChoBmgJaA9DCLqj/+VauXBAlIaUUpRoFUuKaBZHQLLpFc+aBqd1fZQoaAZoCWgPQwgtexLYnDxyQJSGlFKUaBVL02gWR0Cy6Rr0OEuhdX2UKGgGaAloD0MInigJiXSEcECUhpRSlGgVS6doFkdAsukduGbkO3V9lChoBmgJaA9DCFHdXPxtDXJAlIaUUpRoFUuNaBZHQLLpJZTyaux1fZQoaAZoCWgPQwiJQsu6vxtxQJSGlFKUaBVLlmgWR0Cy6ScIzFdcdX2UKGgGaAloD0MICI7LuKkYckCUhpRSlGgVS8BoFkdAsukra/RE4XV9lChoBmgJaA9DCOqu7ILBeXBAlIaUUpRoFUuJaBZHQLLpMx8UmD11fZQoaAZoCWgPQwghy4KJvyhzQJSGlFKUaBVLjmgWR0Cy6T9Qj2SMdX2UKGgGaAloD0MIpfYi2s7CcUCUhpRSlGgVS69oFkdAsulCznied3V9lChoBmgJaA9DCC0mNh8XsXJAlIaUUpRoFUuqaBZHQLLpTCCSRr91fZQoaAZoCWgPQwg7Vik9E05xQJSGlFKUaBVLsmgWR0Cy6U41xbSrdX2UKGgGaAloD0MI7Es2Hiw7c0CUhpRSlGgVS8FoFkdAsulPZ6D5CXV9lChoBmgJaA9DCIviVda2mHJAlIaUUpRoFUu5aBZHQLLpWCF9KEp1fZQoaAZoCWgPQwithsQ9lldzQJSGlFKUaBVLpmgWR0Cy6VobOu7pdX2UKGgGaAloD0MI/N6mP/vZc0CUhpRSlGgVS5xoFkdAsulgl9jPOnV9lChoBmgJaA9DCKxY/KawW3NAlIaUUpRoFUuhaBZHQLLpbHerMkh1fZQoaAZoCWgPQwhkrgyqDWtzQJSGlFKUaBVLtGgWR0Cy6Wxp1zQvdX2UKGgGaAloD0MI8lzfhwNqc0CUhpRSlGgVS65oFkdAsultk078vXV9lChoBmgJaA9DCKDDfHnB7XNAlIaUUpRoFUuoaBZHQLLpcox59mZ1fZQoaAZoCWgPQwjRdkzdlblxQJSGlFKUaBVLimgWR0Cy6XqErXlKdX2UKGgGaAloD0MIB9Fa0SYVc0CUhpRSlGgVS6JoFkdAsul+V9nbqXV9lChoBmgJaA9DCCNm9nnMDnJAlIaUUpRoFUutaBZHQLLpfx9G7SR1fZQoaAZoCWgPQwiAuKtXUWZyQJSGlFKUaBVLsWgWR0Cy6X+wPiDNdX2UKGgGaAloD0MIu/HuyFhtc0CUhpRSlGgVS6loFkdAsumUC6pYLnV9lChoBmgJaA9DCGFUUidgW3NAlIaUUpRoFUuuaBZHQLLpmcebNKR1fZQoaAZoCWgPQwh0mZoE731xQJSGlFKUaBVLpGgWR0Cy6Z/029+PdX2UKGgGaAloD0MIfPDapU3LcUCUhpRSlGgVS6hoFkdAsumg4hllLHV9lChoBmgJaA9DCAVqMXhYyXFAlIaUUpRoFUuvaBZHQLLpoo5PuXx1fZQoaAZoCWgPQwh3E3zTdAZyQJSGlFKUaBVLnGgWR0Cy6aQ7cO9WdX2UKGgGaAloD0MIIXU7+0qOcECUhpRSlGgVS5loFkdAsumkkdFOPHV9lChoBmgJaA9DCCwOZ3511XBAlIaUUpRoFUuNaBZHQLLpropQUHp1fZQoaAZoCWgPQwjWc9L7hjxyQJSGlFKUaBVLk2gWR0Cy6bIp6QeWdX2UKGgGaAloD0MIGY18XrEcckCUhpRSlGgVS5loFkdAsum0AfdRBXV9lChoBmgJaA9DCFbUYBqGcHNAlIaUUpRoFUu1aBZHQLLptiKziS91fZQoaAZoCWgPQwgPt0PD4jlvQJSGlFKUaBVLj2gWR0Cy6bxwl0HRdX2UKGgGaAloD0MIM6SK4tVacECUhpRSlGgVS7FoFkdAsunEz/IbO3V9lChoBmgJaA9DCMxCO6dZT3FAlIaUUpRoFUudaBZHQLLpx1V5rxl1fZQoaAZoCWgPQwhYIHpS5rZzQJSGlFKUaBVLnmgWR0Cy6cdBF/hEdWUu"
74
  },
75
  "ep_success_buffer": {
76
  ":type:": "<class 'collections.deque'>",
77
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
  },
79
+ "_n_updates": 1224,
80
+ "n_steps": 2048,
81
  "gamma": 0.99,
82
  "gae_lambda": 0.98,
83
  "ent_coef": 0.01,
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:39cfecf5729adba7ecb282b94ad35148d68fc7416c301469132eba183c590091
3
  size 87545
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b944ad2729c9bde963046a81726752190cfc754c107f39843c24b4cab5301934
3
  size 87545
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bd9801f00ad22f7697dbb1180a68188e9887d778d6e8a4f5cc9269162f8c7ade
3
  size 43265
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:542466450c4a7b3efa0260c686060102adff40e8e6f2ecd37c25e3e479a50c76
3
  size 43265
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 230.2680921665004, "std_reward": 45.29684583567566, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-24T15:19:25.935635"}
 
1
+ {"mean_reward": 272.85160621641995, "std_reward": 22.165787185935997, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-24T20:23:56.581753"}