KennethEnevoldsen commited on
Commit
a3b91d4
·
verified ·
1 Parent(s): 0448447

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -171
README.md CHANGED
@@ -1,199 +1,95 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
 
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
 
 
 
 
 
 
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
45
 
46
- ### Downstream Use [optional]
 
 
 
 
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
49
 
50
- [More Information Needed]
 
 
 
 
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
 
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
+ tags:
3
+ - seb
4
+ language:
5
+ - da
6
+ - no
7
+ - nb
8
+ - sv
9
+ license: mit
10
  ---
11
 
12
+ ## Munin Neuralbeagle 7b e5
13
+ This model has 32 layers and the embedding size is 4096.
14
 
15
+ This model is utilizes the lora adapter layer introduced in the paper [Improving Text Embeddings with Large Language Models](https://arxiv.org/pdf/2401.00368.pdf) along with the [merged model](https://huggingface.co/RJuro/munin-neuralbeagle-7b) by Roman Jurowetzki which merged the [Danish Munin model](https://huggingface.co/danish-foundation-models/munin-7b-alpha) with the [NeuralBeagle](https://huggingface.co/mlabonne/NeuralBeagle14-7B) model.
16
 
17
 
18
+ ## Usage
19
 
20
+ ### Loading the model
21
 
22
+ ```python
23
+ from peft import PeftConfig, PeftModel
24
+ from transformers import AutoTokenizer, AutoModel
25
 
26
+ repo_id = "KennethEnevoldsen/munin-neuralbeagle-7b-e5"
27
+ config = PeftConfig.from_pretrained(repo_id)
28
 
29
+ base_model = AutoModel.from_pretrained(config.base_model_name_or_path)
30
+ model = PeftModel.from_pretrained(base_model, repo_id)
31
+ tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
32
+ ```
33
 
34
+ Below is an example to encode queries and passages from the MS-MARCO passage ranking dataset.
 
 
 
 
 
 
35
 
36
+ ```python
37
+ import torch
38
+ import torch.nn.functional as F
39
 
40
+ from torch import Tensor
41
+ from transformers import AutoTokenizer, AutoModel
42
 
 
 
 
43
 
44
+ def last_token_pool(last_hidden_states: Tensor,
45
+ attention_mask: Tensor) -> Tensor:
46
+ left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
47
+ if left_padding:
48
+ return last_hidden_states[:, -1]
49
+ else:
50
+ sequence_lengths = attention_mask.sum(dim=1) - 1
51
+ batch_size = last_hidden_states.shape[0]
52
+ return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
53
 
 
54
 
55
+ def get_detailed_instruct(task_description: str, query: str) -> str:
56
+ return f'Instruct: {task_description}\nQuery: {query}'
57
 
 
58
 
59
+ # Each query must come with a one-sentence instruction that describes the task
60
+ task = 'Given a web search query, retrieve relevant passages that answer the query'
61
+ queries = [
62
+ get_detailed_instruct(task, 'how much protein should a female eat'),
63
+ get_detailed_instruct(task, 'summit define')
64
+ ]
65
+ # No need to add instruction for retrieval documents
66
+ documents = [
67
+ "As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.",
68
+ "Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments."
69
+ ]
70
+ input_texts = queries + documents
71
 
72
+ max_length = 4096
73
+ # Tokenize the input texts
74
+ batch_dict = tokenizer(input_texts, max_length=max_length - 1, return_attention_mask=False, padding=False, truncation=True)
75
+ # append eos_token_id to every input_ids
76
+ batch_dict['input_ids'] = [input_ids + [tokenizer.eos_token_id] for input_ids in batch_dict['input_ids']]
77
+ batch_dict = tokenizer.pad(batch_dict, padding=True, return_attention_mask=True, return_tensors='pt')
78
 
79
+ outputs = model(**batch_dict)
80
+ embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
81
 
82
+ # normalize embeddings
83
+ embeddings = F.normalize(embeddings, p=2, dim=1)
84
+ scores = (embeddings[:2] @ embeddings[2:].T) * 100
85
+ print(scores.tolist())
86
+ ```
87
 
88
+ ## Supported Languages
89
 
90
+ This models is intended for use in Danish and Scandinavian languages.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
 
92
  ## Evaluation
93
+ The model has not yet been evaluated. However we plan to evaluate it on [SEB](https://kennethenevoldsen.github.io/scandinavian-embedding-benchmark/)
94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95