KennethTM commited on
Commit
1c78447
·
1 Parent(s): 1fd7e16

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +41 -0
README.md ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - da
4
+ pipeline_tag: text-generation
5
+ widget:
6
+ - text: "### Bruger:\nAnders\n\n### Anmeldelse:\nUmuligt at komme igennem på telefonen.\n\n### Svar:\nKære Anders\n"
7
+ ---
8
+
9
+ # What is this?
10
+
11
+ A fine-tuned GPT-2 model (medium version, ~354.8 M parameters) for generating responses to customer reviews in Danish.
12
+
13
+ # How to use
14
+
15
+ The model is based on the [gpt2-medium-danish model](https://huggingface.co/KennethTM/gpt2-medium-danish). Supervised fine-tuning is applied to adapt the model to generate responses to customer reviews in Danish. A prompting template is applied to the examples used to train (see the example below).
16
+
17
+ Test the model using the pipeline from the [🤗 Transformers](https://github.com/huggingface/transformers) library:
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ generator = pipeline("text-generation", model = "KennethTM/gpt2-medium-danish-review-response")
23
+
24
+ def prompt_template(user, review):
25
+ return f"### Bruger:\n{user}\n\n### Anmeldelse:\n{review}\n\n### Svar:\nKære {user}\n"
26
+
27
+ prompt = prompt_template(user = "Anders", review = "Umuligt at komme igennem på telefonen.")
28
+
29
+ text = generator(prompt)
30
+
31
+ print(text[0]["generated_text"])
32
+ ```
33
+
34
+ Or load it using the Auto* classes:
35
+
36
+ ```python
37
+ from transformers import AutoTokenizer, AutoModelForCausalLM
38
+
39
+ tokenizer = AutoTokenizer.from_pretrained("KennethTM/gpt2-medium-danish-review-response")
40
+ model = AutoModelForCausalLM.from_pretrained("KennethTM/gpt2-medium-danish-review-response")
41
+ ```