Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- da
|
4 |
+
pipeline_tag: text-generation
|
5 |
+
widget:
|
6 |
+
- text: "### Bruger:\nAnders\n\n### Anmeldelse:\nUmuligt at komme igennem på telefonen.\n\n### Svar:\nKære Anders\n"
|
7 |
+
---
|
8 |
+
|
9 |
+
# What is this?
|
10 |
+
|
11 |
+
A fine-tuned GPT-2 model (medium version, ~354.8 M parameters) for generating responses to customer reviews in Danish.
|
12 |
+
|
13 |
+
# How to use
|
14 |
+
|
15 |
+
The model is based on the [gpt2-medium-danish model](https://huggingface.co/KennethTM/gpt2-medium-danish). Supervised fine-tuning is applied to adapt the model to generate responses to customer reviews in Danish. A prompting template is applied to the examples used to train (see the example below).
|
16 |
+
|
17 |
+
Test the model using the pipeline from the [🤗 Transformers](https://github.com/huggingface/transformers) library:
|
18 |
+
|
19 |
+
```python
|
20 |
+
from transformers import pipeline
|
21 |
+
|
22 |
+
generator = pipeline("text-generation", model = "KennethTM/gpt2-medium-danish-review-response")
|
23 |
+
|
24 |
+
def prompt_template(user, review):
|
25 |
+
return f"### Bruger:\n{user}\n\n### Anmeldelse:\n{review}\n\n### Svar:\nKære {user}\n"
|
26 |
+
|
27 |
+
prompt = prompt_template(user = "Anders", review = "Umuligt at komme igennem på telefonen.")
|
28 |
+
|
29 |
+
text = generator(prompt)
|
30 |
+
|
31 |
+
print(text[0]["generated_text"])
|
32 |
+
```
|
33 |
+
|
34 |
+
Or load it using the Auto* classes:
|
35 |
+
|
36 |
+
```python
|
37 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
38 |
+
|
39 |
+
tokenizer = AutoTokenizer.from_pretrained("KennethTM/gpt2-medium-danish-review-response")
|
40 |
+
model = AutoModelForCausalLM.from_pretrained("KennethTM/gpt2-medium-danish-review-response")
|
41 |
+
```
|