KennethTM commited on
Commit
13d6ca3
·
verified ·
1 Parent(s): 6e6f093

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -11
README.md CHANGED
@@ -13,9 +13,15 @@ base_model: google/pix2struct-base
13
 
14
  *Turn table images into HTML!*
15
 
 
 
 
 
 
 
16
  ## About
17
 
18
- This model takes an image of a table and outputs HTML - the model parses both the optical character recognition (OCR) and the structure to HTML format.
19
 
20
  The model expects an image containing only a table. If the table is embedded in a document, first use a table detection model to extract it.
21
 
@@ -25,7 +31,7 @@ The model has been trained using two datasets: [MMTab](https://huggingface.co/da
25
 
26
  ## Usage
27
 
28
- Below is a complete example for loading the model and performing inference on an example table image:
29
 
30
  ```python
31
  import torch
@@ -42,7 +48,6 @@ model.to(device)
42
  model.eval()
43
 
44
  # Load example image from URL
45
- # Example from the MMTab dataset
46
  url = "https://example.com/path_to_table_image.jpg"
47
  response = requests.get(url)
48
  image = Image.open(BytesIO(response.content))
@@ -59,11 +64,3 @@ predictions_decoded = processor.tokenizer.batch_decode(predictions, skip_special
59
  # Show predictions as text
60
  print(predictions_decoded[0])
61
  ```
62
-
63
-
64
-
65
-
66
-
67
- ## Demo app
68
-
69
- Try the [demo app]() which contain both table detection and recognition!
 
13
 
14
  *Turn table images into HTML!*
15
 
16
+
17
+ ## Demo app
18
+
19
+ Try the [demo app]() which contains both table detection and recognition!
20
+
21
+
22
  ## About
23
 
24
+ This model takes an image of a table and outputs HTML - the model parses the image and performs optical character recognition (OCR) and structure recognition to HTML format.
25
 
26
  The model expects an image containing only a table. If the table is embedded in a document, first use a table detection model to extract it.
27
 
 
31
 
32
  ## Usage
33
 
34
+ Below is a complete example of loading the model and performing inference on an example table image (example from the [MMTab dataset](https://huggingface.co/datasets/SpursgoZmy/MMTab)):
35
 
36
  ```python
37
  import torch
 
48
  model.eval()
49
 
50
  # Load example image from URL
 
51
  url = "https://example.com/path_to_table_image.jpg"
52
  response = requests.get(url)
53
  image = Image.open(BytesIO(response.content))
 
64
  # Show predictions as text
65
  print(predictions_decoded[0])
66
  ```