Ketan3101 commited on
Commit
a4f1a2d
·
1 Parent(s): d769492

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -8,7 +8,7 @@ tags:
8
 
9
  ---
10
 
11
- # {Ketan3101/sentensense}
12
 
13
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
 
@@ -28,7 +28,7 @@ Then you can use the model like this:
28
  from sentence_transformers import SentenceTransformer
29
  sentences = ["This is an example sentence", "Each sentence is converted"]
30
 
31
- model = SentenceTransformer('{Ketan3101/sentensense}')
32
  embeddings = model.encode(sentences)
33
  # to print embeddings
34
  print(embeddings)
@@ -78,7 +78,7 @@ print(sentence_embeddings)
78
 
79
  <!--- Describe how your model was evaluated -->
80
 
81
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=Ketan3101/sentensense)
82
 
83
 
84
  ## Training
 
8
 
9
  ---
10
 
11
+ # Ketan3101/sentensense
12
 
13
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
 
 
28
  from sentence_transformers import SentenceTransformer
29
  sentences = ["This is an example sentence", "Each sentence is converted"]
30
 
31
+ model = SentenceTransformer('Ketan3101/sentensense')
32
  embeddings = model.encode(sentences)
33
  # to print embeddings
34
  print(embeddings)
 
78
 
79
  <!--- Describe how your model was evaluated -->
80
 
81
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://www.sbert.net](https://www.sbert.net/?model_name=Ketan3101/sentensense)
82
 
83
 
84
  ## Training