--- base_model: openai/whisper-large-v3 datasets: - common_voice_16_1 library_name: peft license: apache-2.0 tags: - generated_from_trainer model-index: - name: whisper-large-v3-finetuned results: [] --- [Visualize in Weights & Biases](https://wandb.ai/keviinkibe/huggingface/runs/lb835u75) [Visualize in Weights & Biases](https://wandb.ai/keviinkibe/huggingface/runs/lb835u75) [Visualize in Weights & Biases](https://wandb.ai/keviinkibe/huggingface/runs/lb835u75) [Visualize in Weights & Biases](https://wandb.ai/keviinkibe/huggingface/runs/lb835u75) [Visualize in Weights & Biases](https://wandb.ai/keviinkibe/huggingface/runs/lb835u75) [Visualize in Weights & Biases](https://wandb.ai/keviinkibe/huggingface/runs/lb835u75) # whisper-large-v3-finetuned This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the common_voice_16_1 dataset. It achieves the following results on the evaluation set: - eval_loss: 2.3416 - eval_wer: 141.3793 - eval_runtime: 216.593 - eval_samples_per_second: 0.046 - eval_steps_per_second: 0.014 - epoch: 7.09 - step: 100 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 10 - training_steps: 100 - mixed_precision_training: Native AMP ### Framework versions - PEFT 0.11.1 - Transformers 4.42.3 - Pytorch 2.2.2+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1