File size: 1,896 Bytes
da7ef47 21a5089 da7ef47 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: openai/whisper-small
model-index:
- name: whisper-small-finetuned-finetuned-finetuned-finetuned-finetuned-finetuned
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/keviinkibe/huggingface/runs/h96zzg1x)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/keviinkibe/huggingface/runs/h96zzg1x)
# whisper-small-finetuned-finetuned-finetuned-finetuned-finetuned-finetuned
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset.
It achieves the following results on the evaluation set:
- eval_loss: 1.8724
- eval_wer: 78.8027
- eval_runtime: 475.0113
- eval_samples_per_second: 0.526
- eval_steps_per_second: 0.067
- epoch: 1.2812
- step: 3000
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- training_steps: 4000
- mixed_precision_training: Native AMP
### Framework versions
- PEFT 0.11.1
- Transformers 4.42.3
- Pytorch 2.2.2+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1 |