File size: 1,839 Bytes
de8354a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6b1723
 
 
 
 
 
 
de8354a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
base_model: openai/whisper-small
datasets:
- common_voice_16_1
library_name: peft
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: whisper-small-finetuned
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/keviinkibe/huggingface/runs/c571y8fl)
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/keviinkibe/huggingface/runs/c571y8fl)
# whisper-small-finetuned

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_16_1 dataset.
It achieves the following results on the evaluation set:
- eval_loss: 2.6271
- eval_wer: 89.9487
- eval_runtime: 511.0164
- eval_samples_per_second: 0.978
- eval_steps_per_second: 0.063
- epoch: 0.3333
- step: 100

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 300
- mixed_precision_training: Native AMP

### Framework versions

- PEFT 0.11.1
- Transformers 4.42.3
- Pytorch 2.2.2+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1