File size: 10,580 Bytes
1370528 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
---
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: Chapman hits winning double as Blue Jays complete sweep of Red Sox with 3-2
victory
- text: Opinion | The Election No One Seems to Want Is Coming Right at Us
- text: How to watch The Real Housewives of Miami new episode free Jan. 10
- text: Vitamin Sea Brewing set to open 2nd brewery and taproom in Mass.
- text: Opinion | When the World Feels Dark, Seek Out Delight
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/paraphrase-mpnet-base-v2
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.7060702875399361
name: Accuracy
---
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 9 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | <ul><li>'A Reinvented True Detective Plays It Cool'</li><li>"It's owl season in Massachusetts. Here's how to spot them"</li><li>'Taylor Swift class at Harvard: Professor needs to hire more teaching assistants'</li></ul> |
| 6 | <ul><li>'Springfield Mayor Domenic Sarno tests positive for COVID-19'</li><li>'How to Take Care of Your Skin in the Fall and Winter'</li><li>'Subbing plant-based milk for dairy options is a healthy decision'</li></ul> |
| 2 | <ul><li>'Mattel Has a New Cherokee Barbie. Not Everyone Is Happy About It.'</li><li>'Who Is Alan Garber, Harvards Interim President?'</li><li>'Springfield Marine training in Japan near Mount Fuji (Photos)'</li></ul> |
| 0 | <ul><li>'Heres which Northampton businesses might soon get all-alcohol liquor licenses'</li><li>'People in Business: Jan. 15, 2024'</li><li>'Come Home With Memories, Not a Shocking Phone Bill'</li></ul> |
| 7 | <ul><li>'3 Patriots vs. Chiefs predictions'</li><li>'Tuskegee vs. Alabama State How to watch college football'</li><li>'WMass Boys Basketball Season Stats Leaders: Who leads the region by class?'</li></ul> |
| 8 | <ul><li>'Biting Cold Sweeping U.S. Hits the South With an Unfamiliar Freeze'</li><li>'Some Sunday storms and sun - Boston News, Weather, Sports'</li><li>'More snow on the way in Mass. on Tuesday with slippery evening commute'</li></ul> |
| 4 | <ul><li>'title'</li><li>'This sentence is label'</li><li>'This sentence is label'</li></ul> |
| 1 | <ul><li>'Two cars crash through former Boston Market in Saugus'</li><li>'U.S. Naval Officer Who Helped China Is Sentenced to 2 Years in Prison'</li><li>'American Airlines flight attendant arrested after allegedly filming teenage girl in bathroom on flight to Boston - Boston News, Weather, Sports'</li></ul> |
| 5 | <ul><li>'Opinion | Why Wasnt DeSantis the Guy?'</li><li>'Reports Say Pope Francis Is Evicting U.S. Cardinal From His Vatican Home'</li><li>'Biden Says Its Self-Evident That Trump Supported an Insurrection'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.7061 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Kevinger/setfit-hub-report")
# Run inference
preds = model("Opinion | When the World Feels Dark, Seek Out Delight")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 1 | 7.2993 | 21 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 16 |
| 1 | 16 |
| 2 | 16 |
| 3 | 16 |
| 4 | 9 |
| 5 | 16 |
| 6 | 16 |
| 7 | 16 |
| 8 | 16 |
### Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (1, 16)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0010 | 1 | 0.3619 | - |
| 0.0481 | 50 | 0.097 | - |
| 0.0962 | 100 | 0.0327 | - |
| 0.1442 | 150 | 0.0044 | - |
| 0.1923 | 200 | 0.0013 | - |
| 0.2404 | 250 | 0.0011 | - |
| 0.2885 | 300 | 0.001 | - |
| 0.3365 | 350 | 0.0008 | - |
| 0.3846 | 400 | 0.001 | - |
| 0.4327 | 450 | 0.0006 | - |
| 0.4808 | 500 | 0.0008 | - |
| 0.5288 | 550 | 0.0005 | - |
| 0.5769 | 600 | 0.0012 | - |
| 0.625 | 650 | 0.0005 | - |
| 0.6731 | 700 | 0.0006 | - |
| 0.7212 | 750 | 0.0004 | - |
| 0.7692 | 800 | 0.0005 | - |
| 0.8173 | 850 | 0.0005 | - |
| 0.8654 | 900 | 0.0006 | - |
| 0.9135 | 950 | 0.0014 | - |
| 0.9615 | 1000 | 0.0006 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.16.1
- Tokenizers: 0.15.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |