File size: 10,580 Bytes
1370528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
---
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: Chapman hits winning double as Blue Jays complete sweep of Red Sox with 3-2
    victory
- text: Opinion | The Election No One Seems to Want Is Coming Right at Us
- text: How to watch The Real Housewives of Miami new episode free Jan. 10
- text: Vitamin Sea Brewing set to open 2nd brewery and taproom in Mass.
- text: Opinion | When the World Feels Dark, Seek Out Delight
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/paraphrase-mpnet-base-v2
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.7060702875399361
      name: Accuracy
---

# SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 9 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                                                                                                            |
|:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3     | <ul><li>'A Reinvented True Detective Plays It Cool'</li><li>"It's owl season in Massachusetts. Here's how to spot them"</li><li>'Taylor Swift class at Harvard: Professor needs to hire more teaching assistants'</li></ul>                                                                                         |
| 6     | <ul><li>'Springfield Mayor Domenic Sarno tests positive for COVID-19'</li><li>'How to Take Care of Your Skin in the Fall and Winter'</li><li>'Subbing plant-based milk for dairy options is a healthy decision'</li></ul>                                                                                           |
| 2     | <ul><li>'Mattel Has a New Cherokee Barbie. Not Everyone Is Happy About It.'</li><li>'Who Is Alan Garber, Harvards Interim President?'</li><li>'Springfield Marine training in Japan near Mount Fuji (Photos)'</li></ul>                                                                                             |
| 0     | <ul><li>'Heres which Northampton businesses might soon get all-alcohol liquor licenses'</li><li>'People in Business: Jan. 15, 2024'</li><li>'Come Home With Memories, Not a Shocking Phone Bill'</li></ul>                                                                                                          |
| 7     | <ul><li>'3 Patriots vs. Chiefs predictions'</li><li>'Tuskegee vs. Alabama State  How to watch college football'</li><li>'WMass Boys Basketball Season Stats Leaders: Who leads the region by class?'</li></ul>                                                                                                      |
| 8     | <ul><li>'Biting Cold Sweeping U.S. Hits the South With an Unfamiliar Freeze'</li><li>'Some Sunday storms and sun - Boston News, Weather, Sports'</li><li>'More snow on the way in Mass. on Tuesday with slippery evening commute'</li></ul>                                                                         |
| 4     | <ul><li>'title'</li><li>'This sentence is label'</li><li>'This sentence is label'</li></ul>                                                                                                                                                                                                                         |
| 1     | <ul><li>'Two cars crash through former Boston Market in Saugus'</li><li>'U.S. Naval Officer Who Helped China Is Sentenced to 2 Years in Prison'</li><li>'American Airlines flight attendant arrested after allegedly filming teenage girl in bathroom on flight to Boston - Boston News, Weather, Sports'</li></ul> |
| 5     | <ul><li>'Opinion | Why Wasnt DeSantis the Guy?'</li><li>'Reports Say Pope Francis Is Evicting U.S. Cardinal From His Vatican Home'</li><li>'Biden Says Its Self-Evident That Trump Supported an Insurrection'</li></ul>                                                                                             |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.7061   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Kevinger/setfit-hub-report")
# Run inference
preds = model("Opinion | When the World Feels Dark, Seek Out Delight")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 1   | 7.2993 | 21  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0     | 16                    |
| 1     | 16                    |
| 2     | 16                    |
| 3     | 16                    |
| 4     | 9                     |
| 5     | 16                    |
| 6     | 16                    |
| 7     | 16                    |
| 8     | 16                    |

### Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (1, 16)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch  | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0010 | 1    | 0.3619        | -               |
| 0.0481 | 50   | 0.097         | -               |
| 0.0962 | 100  | 0.0327        | -               |
| 0.1442 | 150  | 0.0044        | -               |
| 0.1923 | 200  | 0.0013        | -               |
| 0.2404 | 250  | 0.0011        | -               |
| 0.2885 | 300  | 0.001         | -               |
| 0.3365 | 350  | 0.0008        | -               |
| 0.3846 | 400  | 0.001         | -               |
| 0.4327 | 450  | 0.0006        | -               |
| 0.4808 | 500  | 0.0008        | -               |
| 0.5288 | 550  | 0.0005        | -               |
| 0.5769 | 600  | 0.0012        | -               |
| 0.625  | 650  | 0.0005        | -               |
| 0.6731 | 700  | 0.0006        | -               |
| 0.7212 | 750  | 0.0004        | -               |
| 0.7692 | 800  | 0.0005        | -               |
| 0.8173 | 850  | 0.0005        | -               |
| 0.8654 | 900  | 0.0006        | -               |
| 0.9135 | 950  | 0.0014        | -               |
| 0.9615 | 1000 | 0.0006        | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.16.1
- Tokenizers: 0.15.0

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->