---
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: Sonos speakers are up to 25 percent off, plus the rest of this week's best
tech deals | Engadget - Engadget
- text: Judy Blume says her quote about being 'behind' J.K. Rowling was 'taken out
of context' as she clarifies support for the trans community - Yahoo Entertainment
- text: Mock Draft Monday | Here's who CBS Sports has the Commanders taking in the
first round - Washington Commanders
- text: GIANT 130-foot asteroid rushing towards Earth TODAY at 42404 kmph, NASA warns
- HT Tech
- text: Jonathan Majors & Manager Entertainment 360 Part Ways; Actor Facing Domestic
Violence Allegations In NYC - Deadline
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/paraphrase-mpnet-base-v2
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.8577235772357723
name: Accuracy
---
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 6 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 |
- 'The Super Mario Bros. Movie Expected To Pass $1 Billion, Biggest Movie Release This Year - Kotaku'
- 'Richard Lewis Has Parkinson’s Disease, Finished With Stand-Up Comedy Career - Deadline'
- "EXCLUSIVE Dame Mary Quant's plans for 'small funeral' near her home - Daily Mail"
|
| 3 | - 'GPT-5 not in the works currently: OpenAI CEO Sam Altman - The Economic Times'
- 'The 2023 Am Law 100: Ranked by Gross Revenue | The American Lawyer - Law.com'
- "Savings Account or CD: What's Smarter Right Now? - Investopedia"
|
| 5 | - "I used all 2023 flagships — here's why the Galaxy S23 Ultra is my favorite phone - Android Central"
- "Google's AI experts on the future of artificial intelligence | 60 Minutes - CBS News"
- 'You can snag a first-gen Apple Watch SE for just $149 right now - The Verge'
|
| 0 | - 'Fernando Tatis Jr. to make Padres return - MLB.com'
- 'Knicks-Cavaliers Game 3 live updates: Score, news, more from NBA Playoffs - New York Post '
- 'Josh Donaldson Likely To Miss Multiple Weeks With Hamstring Strain - MLB Trade Rumors'
|
| 2 | - 'Are Fermented Foods Actually Good for You? - Lifehacker'
- 'ADHD medication | New study says more students self-medicating with ADHD medication - WTVD-TV'
- 'Mom With Microscopic Colitis Had Diarrhea up to 40 Times a Day - Insider'
|
| 1 | - 'Creating Artificial Avians: A Novel Neural Network Generates Realistic Bird Pictures from Text using Common Sense - Neuroscience News'
- 'Consciousness begins with feeling, not thinking | Antonio Damasio, Hanna Damasio, - IAI'
- 'The Myth of Objective Data - The MIT Press Reader'
|
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.8577 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Kevinger/setfit-newsapi")
# Run inference
preds = model("GIANT 130-foot asteroid rushing towards Earth TODAY at 42404 kmph, NASA warns - HT Tech")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 4 | 9.1771 | 22 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 16 |
| 1 | 16 |
| 2 | 16 |
| 3 | 16 |
| 4 | 16 |
| 5 | 16 |
### Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (1, 16)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0021 | 1 | 0.2926 | - |
| 0.1042 | 50 | 0.0446 | - |
| 0.2083 | 100 | 0.0023 | - |
| 0.3125 | 150 | 0.0011 | - |
| 0.4167 | 200 | 0.001 | - |
| 0.5208 | 250 | 0.0007 | - |
| 0.625 | 300 | 0.0007 | - |
| 0.7292 | 350 | 0.0009 | - |
| 0.8333 | 400 | 0.0075 | - |
| 0.9375 | 450 | 0.0006 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.16.1
- Tokenizers: 0.15.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```