KeyurRamoliya commited on
Commit
bb1ecd2
1 Parent(s): 83fc0cf

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +2544 -0
README.md ADDED
@@ -0,0 +1,2544 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: intfloat/e5-large-v2
3
+ language:
4
+ - en
5
+ license: mit
6
+ tags:
7
+ - mteb
8
+ - Sentence Transformers
9
+ - sentence-similarity
10
+ - sentence-transformers
11
+ - llama-cpp
12
+ - gguf-my-repo
13
+ model-index:
14
+ - name: e5-large-v2
15
+ results:
16
+ - task:
17
+ type: Classification
18
+ dataset:
19
+ name: MTEB AmazonCounterfactualClassification (en)
20
+ type: mteb/amazon_counterfactual
21
+ config: en
22
+ split: test
23
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
24
+ metrics:
25
+ - type: accuracy
26
+ value: 79.22388059701493
27
+ - type: ap
28
+ value: 43.20816505595132
29
+ - type: f1
30
+ value: 73.27811303522058
31
+ - task:
32
+ type: Classification
33
+ dataset:
34
+ name: MTEB AmazonPolarityClassification
35
+ type: mteb/amazon_polarity
36
+ config: default
37
+ split: test
38
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
39
+ metrics:
40
+ - type: accuracy
41
+ value: 93.748325
42
+ - type: ap
43
+ value: 90.72534979701297
44
+ - type: f1
45
+ value: 93.73895874282185
46
+ - task:
47
+ type: Classification
48
+ dataset:
49
+ name: MTEB AmazonReviewsClassification (en)
50
+ type: mteb/amazon_reviews_multi
51
+ config: en
52
+ split: test
53
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
54
+ metrics:
55
+ - type: accuracy
56
+ value: 48.612
57
+ - type: f1
58
+ value: 47.61157345898393
59
+ - task:
60
+ type: Retrieval
61
+ dataset:
62
+ name: MTEB ArguAna
63
+ type: arguana
64
+ config: default
65
+ split: test
66
+ revision: None
67
+ metrics:
68
+ - type: map_at_1
69
+ value: 23.541999999999998
70
+ - type: map_at_10
71
+ value: 38.208
72
+ - type: map_at_100
73
+ value: 39.417
74
+ - type: map_at_1000
75
+ value: 39.428999999999995
76
+ - type: map_at_3
77
+ value: 33.95
78
+ - type: map_at_5
79
+ value: 36.329
80
+ - type: mrr_at_1
81
+ value: 23.755000000000003
82
+ - type: mrr_at_10
83
+ value: 38.288
84
+ - type: mrr_at_100
85
+ value: 39.511
86
+ - type: mrr_at_1000
87
+ value: 39.523
88
+ - type: mrr_at_3
89
+ value: 34.009
90
+ - type: mrr_at_5
91
+ value: 36.434
92
+ - type: ndcg_at_1
93
+ value: 23.541999999999998
94
+ - type: ndcg_at_10
95
+ value: 46.417
96
+ - type: ndcg_at_100
97
+ value: 51.812000000000005
98
+ - type: ndcg_at_1000
99
+ value: 52.137
100
+ - type: ndcg_at_3
101
+ value: 37.528
102
+ - type: ndcg_at_5
103
+ value: 41.81
104
+ - type: precision_at_1
105
+ value: 23.541999999999998
106
+ - type: precision_at_10
107
+ value: 7.269
108
+ - type: precision_at_100
109
+ value: 0.9690000000000001
110
+ - type: precision_at_1000
111
+ value: 0.099
112
+ - type: precision_at_3
113
+ value: 15.979
114
+ - type: precision_at_5
115
+ value: 11.664
116
+ - type: recall_at_1
117
+ value: 23.541999999999998
118
+ - type: recall_at_10
119
+ value: 72.688
120
+ - type: recall_at_100
121
+ value: 96.871
122
+ - type: recall_at_1000
123
+ value: 99.431
124
+ - type: recall_at_3
125
+ value: 47.937000000000005
126
+ - type: recall_at_5
127
+ value: 58.321
128
+ - task:
129
+ type: Clustering
130
+ dataset:
131
+ name: MTEB ArxivClusteringP2P
132
+ type: mteb/arxiv-clustering-p2p
133
+ config: default
134
+ split: test
135
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
136
+ metrics:
137
+ - type: v_measure
138
+ value: 45.546499570522094
139
+ - task:
140
+ type: Clustering
141
+ dataset:
142
+ name: MTEB ArxivClusteringS2S
143
+ type: mteb/arxiv-clustering-s2s
144
+ config: default
145
+ split: test
146
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
147
+ metrics:
148
+ - type: v_measure
149
+ value: 41.01607489943561
150
+ - task:
151
+ type: Reranking
152
+ dataset:
153
+ name: MTEB AskUbuntuDupQuestions
154
+ type: mteb/askubuntudupquestions-reranking
155
+ config: default
156
+ split: test
157
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
158
+ metrics:
159
+ - type: map
160
+ value: 59.616107510107774
161
+ - type: mrr
162
+ value: 72.75106626214661
163
+ - task:
164
+ type: STS
165
+ dataset:
166
+ name: MTEB BIOSSES
167
+ type: mteb/biosses-sts
168
+ config: default
169
+ split: test
170
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
171
+ metrics:
172
+ - type: cos_sim_pearson
173
+ value: 84.33018094733868
174
+ - type: cos_sim_spearman
175
+ value: 83.60190492611737
176
+ - type: euclidean_pearson
177
+ value: 82.1492450218961
178
+ - type: euclidean_spearman
179
+ value: 82.70308926526991
180
+ - type: manhattan_pearson
181
+ value: 81.93959600076842
182
+ - type: manhattan_spearman
183
+ value: 82.73260801016369
184
+ - task:
185
+ type: Classification
186
+ dataset:
187
+ name: MTEB Banking77Classification
188
+ type: mteb/banking77
189
+ config: default
190
+ split: test
191
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
192
+ metrics:
193
+ - type: accuracy
194
+ value: 84.54545454545455
195
+ - type: f1
196
+ value: 84.49582530928923
197
+ - task:
198
+ type: Clustering
199
+ dataset:
200
+ name: MTEB BiorxivClusteringP2P
201
+ type: mteb/biorxiv-clustering-p2p
202
+ config: default
203
+ split: test
204
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
205
+ metrics:
206
+ - type: v_measure
207
+ value: 37.362725540120096
208
+ - task:
209
+ type: Clustering
210
+ dataset:
211
+ name: MTEB BiorxivClusteringS2S
212
+ type: mteb/biorxiv-clustering-s2s
213
+ config: default
214
+ split: test
215
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
216
+ metrics:
217
+ - type: v_measure
218
+ value: 34.849509608178145
219
+ - task:
220
+ type: Retrieval
221
+ dataset:
222
+ name: MTEB CQADupstackAndroidRetrieval
223
+ type: BeIR/cqadupstack
224
+ config: default
225
+ split: test
226
+ revision: None
227
+ metrics:
228
+ - type: map_at_1
229
+ value: 31.502999999999997
230
+ - type: map_at_10
231
+ value: 43.323
232
+ - type: map_at_100
233
+ value: 44.708999999999996
234
+ - type: map_at_1000
235
+ value: 44.838
236
+ - type: map_at_3
237
+ value: 38.987
238
+ - type: map_at_5
239
+ value: 41.516999999999996
240
+ - type: mrr_at_1
241
+ value: 38.769999999999996
242
+ - type: mrr_at_10
243
+ value: 49.13
244
+ - type: mrr_at_100
245
+ value: 49.697
246
+ - type: mrr_at_1000
247
+ value: 49.741
248
+ - type: mrr_at_3
249
+ value: 45.804
250
+ - type: mrr_at_5
251
+ value: 47.842
252
+ - type: ndcg_at_1
253
+ value: 38.769999999999996
254
+ - type: ndcg_at_10
255
+ value: 50.266999999999996
256
+ - type: ndcg_at_100
257
+ value: 54.967
258
+ - type: ndcg_at_1000
259
+ value: 56.976000000000006
260
+ - type: ndcg_at_3
261
+ value: 43.823
262
+ - type: ndcg_at_5
263
+ value: 47.12
264
+ - type: precision_at_1
265
+ value: 38.769999999999996
266
+ - type: precision_at_10
267
+ value: 10.057
268
+ - type: precision_at_100
269
+ value: 1.554
270
+ - type: precision_at_1000
271
+ value: 0.202
272
+ - type: precision_at_3
273
+ value: 21.125
274
+ - type: precision_at_5
275
+ value: 15.851
276
+ - type: recall_at_1
277
+ value: 31.502999999999997
278
+ - type: recall_at_10
279
+ value: 63.715999999999994
280
+ - type: recall_at_100
281
+ value: 83.61800000000001
282
+ - type: recall_at_1000
283
+ value: 96.63199999999999
284
+ - type: recall_at_3
285
+ value: 45.403
286
+ - type: recall_at_5
287
+ value: 54.481
288
+ - type: map_at_1
289
+ value: 27.833000000000002
290
+ - type: map_at_10
291
+ value: 37.330999999999996
292
+ - type: map_at_100
293
+ value: 38.580999999999996
294
+ - type: map_at_1000
295
+ value: 38.708
296
+ - type: map_at_3
297
+ value: 34.713
298
+ - type: map_at_5
299
+ value: 36.104
300
+ - type: mrr_at_1
301
+ value: 35.223
302
+ - type: mrr_at_10
303
+ value: 43.419000000000004
304
+ - type: mrr_at_100
305
+ value: 44.198
306
+ - type: mrr_at_1000
307
+ value: 44.249
308
+ - type: mrr_at_3
309
+ value: 41.614000000000004
310
+ - type: mrr_at_5
311
+ value: 42.553000000000004
312
+ - type: ndcg_at_1
313
+ value: 35.223
314
+ - type: ndcg_at_10
315
+ value: 42.687999999999995
316
+ - type: ndcg_at_100
317
+ value: 47.447
318
+ - type: ndcg_at_1000
319
+ value: 49.701
320
+ - type: ndcg_at_3
321
+ value: 39.162
322
+ - type: ndcg_at_5
323
+ value: 40.557
324
+ - type: precision_at_1
325
+ value: 35.223
326
+ - type: precision_at_10
327
+ value: 7.962
328
+ - type: precision_at_100
329
+ value: 1.304
330
+ - type: precision_at_1000
331
+ value: 0.18
332
+ - type: precision_at_3
333
+ value: 19.023
334
+ - type: precision_at_5
335
+ value: 13.184999999999999
336
+ - type: recall_at_1
337
+ value: 27.833000000000002
338
+ - type: recall_at_10
339
+ value: 51.881
340
+ - type: recall_at_100
341
+ value: 72.04
342
+ - type: recall_at_1000
343
+ value: 86.644
344
+ - type: recall_at_3
345
+ value: 40.778
346
+ - type: recall_at_5
347
+ value: 45.176
348
+ - type: map_at_1
349
+ value: 38.175
350
+ - type: map_at_10
351
+ value: 51.174
352
+ - type: map_at_100
353
+ value: 52.26499999999999
354
+ - type: map_at_1000
355
+ value: 52.315999999999995
356
+ - type: map_at_3
357
+ value: 47.897
358
+ - type: map_at_5
359
+ value: 49.703
360
+ - type: mrr_at_1
361
+ value: 43.448
362
+ - type: mrr_at_10
363
+ value: 54.505
364
+ - type: mrr_at_100
365
+ value: 55.216
366
+ - type: mrr_at_1000
367
+ value: 55.242000000000004
368
+ - type: mrr_at_3
369
+ value: 51.98500000000001
370
+ - type: mrr_at_5
371
+ value: 53.434000000000005
372
+ - type: ndcg_at_1
373
+ value: 43.448
374
+ - type: ndcg_at_10
375
+ value: 57.282
376
+ - type: ndcg_at_100
377
+ value: 61.537
378
+ - type: ndcg_at_1000
379
+ value: 62.546
380
+ - type: ndcg_at_3
381
+ value: 51.73799999999999
382
+ - type: ndcg_at_5
383
+ value: 54.324
384
+ - type: precision_at_1
385
+ value: 43.448
386
+ - type: precision_at_10
387
+ value: 9.292
388
+ - type: precision_at_100
389
+ value: 1.233
390
+ - type: precision_at_1000
391
+ value: 0.136
392
+ - type: precision_at_3
393
+ value: 23.218
394
+ - type: precision_at_5
395
+ value: 15.887
396
+ - type: recall_at_1
397
+ value: 38.175
398
+ - type: recall_at_10
399
+ value: 72.00999999999999
400
+ - type: recall_at_100
401
+ value: 90.155
402
+ - type: recall_at_1000
403
+ value: 97.257
404
+ - type: recall_at_3
405
+ value: 57.133
406
+ - type: recall_at_5
407
+ value: 63.424
408
+ - type: map_at_1
409
+ value: 22.405
410
+ - type: map_at_10
411
+ value: 30.043
412
+ - type: map_at_100
413
+ value: 31.191000000000003
414
+ - type: map_at_1000
415
+ value: 31.275
416
+ - type: map_at_3
417
+ value: 27.034000000000002
418
+ - type: map_at_5
419
+ value: 28.688000000000002
420
+ - type: mrr_at_1
421
+ value: 24.068
422
+ - type: mrr_at_10
423
+ value: 31.993
424
+ - type: mrr_at_100
425
+ value: 32.992
426
+ - type: mrr_at_1000
427
+ value: 33.050000000000004
428
+ - type: mrr_at_3
429
+ value: 28.964000000000002
430
+ - type: mrr_at_5
431
+ value: 30.653000000000002
432
+ - type: ndcg_at_1
433
+ value: 24.068
434
+ - type: ndcg_at_10
435
+ value: 35.198
436
+ - type: ndcg_at_100
437
+ value: 40.709
438
+ - type: ndcg_at_1000
439
+ value: 42.855
440
+ - type: ndcg_at_3
441
+ value: 29.139
442
+ - type: ndcg_at_5
443
+ value: 32.045
444
+ - type: precision_at_1
445
+ value: 24.068
446
+ - type: precision_at_10
447
+ value: 5.65
448
+ - type: precision_at_100
449
+ value: 0.885
450
+ - type: precision_at_1000
451
+ value: 0.11199999999999999
452
+ - type: precision_at_3
453
+ value: 12.279
454
+ - type: precision_at_5
455
+ value: 8.994
456
+ - type: recall_at_1
457
+ value: 22.405
458
+ - type: recall_at_10
459
+ value: 49.391
460
+ - type: recall_at_100
461
+ value: 74.53699999999999
462
+ - type: recall_at_1000
463
+ value: 90.605
464
+ - type: recall_at_3
465
+ value: 33.126
466
+ - type: recall_at_5
467
+ value: 40.073
468
+ - type: map_at_1
469
+ value: 13.309999999999999
470
+ - type: map_at_10
471
+ value: 20.688000000000002
472
+ - type: map_at_100
473
+ value: 22.022
474
+ - type: map_at_1000
475
+ value: 22.152
476
+ - type: map_at_3
477
+ value: 17.954
478
+ - type: map_at_5
479
+ value: 19.439
480
+ - type: mrr_at_1
481
+ value: 16.294
482
+ - type: mrr_at_10
483
+ value: 24.479
484
+ - type: mrr_at_100
485
+ value: 25.515
486
+ - type: mrr_at_1000
487
+ value: 25.593
488
+ - type: mrr_at_3
489
+ value: 21.642
490
+ - type: mrr_at_5
491
+ value: 23.189999999999998
492
+ - type: ndcg_at_1
493
+ value: 16.294
494
+ - type: ndcg_at_10
495
+ value: 25.833000000000002
496
+ - type: ndcg_at_100
497
+ value: 32.074999999999996
498
+ - type: ndcg_at_1000
499
+ value: 35.083
500
+ - type: ndcg_at_3
501
+ value: 20.493
502
+ - type: ndcg_at_5
503
+ value: 22.949
504
+ - type: precision_at_1
505
+ value: 16.294
506
+ - type: precision_at_10
507
+ value: 5.112
508
+ - type: precision_at_100
509
+ value: 0.96
510
+ - type: precision_at_1000
511
+ value: 0.134
512
+ - type: precision_at_3
513
+ value: 9.908999999999999
514
+ - type: precision_at_5
515
+ value: 7.587000000000001
516
+ - type: recall_at_1
517
+ value: 13.309999999999999
518
+ - type: recall_at_10
519
+ value: 37.851
520
+ - type: recall_at_100
521
+ value: 64.835
522
+ - type: recall_at_1000
523
+ value: 86.334
524
+ - type: recall_at_3
525
+ value: 23.493
526
+ - type: recall_at_5
527
+ value: 29.528
528
+ - type: map_at_1
529
+ value: 25.857999999999997
530
+ - type: map_at_10
531
+ value: 35.503
532
+ - type: map_at_100
533
+ value: 36.957
534
+ - type: map_at_1000
535
+ value: 37.065
536
+ - type: map_at_3
537
+ value: 32.275999999999996
538
+ - type: map_at_5
539
+ value: 34.119
540
+ - type: mrr_at_1
541
+ value: 31.954
542
+ - type: mrr_at_10
543
+ value: 40.851
544
+ - type: mrr_at_100
545
+ value: 41.863
546
+ - type: mrr_at_1000
547
+ value: 41.900999999999996
548
+ - type: mrr_at_3
549
+ value: 38.129999999999995
550
+ - type: mrr_at_5
551
+ value: 39.737
552
+ - type: ndcg_at_1
553
+ value: 31.954
554
+ - type: ndcg_at_10
555
+ value: 41.343999999999994
556
+ - type: ndcg_at_100
557
+ value: 47.397
558
+ - type: ndcg_at_1000
559
+ value: 49.501
560
+ - type: ndcg_at_3
561
+ value: 36.047000000000004
562
+ - type: ndcg_at_5
563
+ value: 38.639
564
+ - type: precision_at_1
565
+ value: 31.954
566
+ - type: precision_at_10
567
+ value: 7.68
568
+ - type: precision_at_100
569
+ value: 1.247
570
+ - type: precision_at_1000
571
+ value: 0.16199999999999998
572
+ - type: precision_at_3
573
+ value: 17.132
574
+ - type: precision_at_5
575
+ value: 12.589
576
+ - type: recall_at_1
577
+ value: 25.857999999999997
578
+ - type: recall_at_10
579
+ value: 53.43599999999999
580
+ - type: recall_at_100
581
+ value: 78.82400000000001
582
+ - type: recall_at_1000
583
+ value: 92.78999999999999
584
+ - type: recall_at_3
585
+ value: 38.655
586
+ - type: recall_at_5
587
+ value: 45.216
588
+ - type: map_at_1
589
+ value: 24.709
590
+ - type: map_at_10
591
+ value: 34.318
592
+ - type: map_at_100
593
+ value: 35.657
594
+ - type: map_at_1000
595
+ value: 35.783
596
+ - type: map_at_3
597
+ value: 31.326999999999998
598
+ - type: map_at_5
599
+ value: 33.021
600
+ - type: mrr_at_1
601
+ value: 30.137000000000004
602
+ - type: mrr_at_10
603
+ value: 39.093
604
+ - type: mrr_at_100
605
+ value: 39.992
606
+ - type: mrr_at_1000
607
+ value: 40.056999999999995
608
+ - type: mrr_at_3
609
+ value: 36.606
610
+ - type: mrr_at_5
611
+ value: 37.861
612
+ - type: ndcg_at_1
613
+ value: 30.137000000000004
614
+ - type: ndcg_at_10
615
+ value: 39.974
616
+ - type: ndcg_at_100
617
+ value: 45.647999999999996
618
+ - type: ndcg_at_1000
619
+ value: 48.259
620
+ - type: ndcg_at_3
621
+ value: 35.028
622
+ - type: ndcg_at_5
623
+ value: 37.175999999999995
624
+ - type: precision_at_1
625
+ value: 30.137000000000004
626
+ - type: precision_at_10
627
+ value: 7.363
628
+ - type: precision_at_100
629
+ value: 1.184
630
+ - type: precision_at_1000
631
+ value: 0.161
632
+ - type: precision_at_3
633
+ value: 16.857
634
+ - type: precision_at_5
635
+ value: 11.963
636
+ - type: recall_at_1
637
+ value: 24.709
638
+ - type: recall_at_10
639
+ value: 52.087
640
+ - type: recall_at_100
641
+ value: 76.125
642
+ - type: recall_at_1000
643
+ value: 93.82300000000001
644
+ - type: recall_at_3
645
+ value: 38.149
646
+ - type: recall_at_5
647
+ value: 43.984
648
+ - type: map_at_1
649
+ value: 23.40791666666667
650
+ - type: map_at_10
651
+ value: 32.458083333333335
652
+ - type: map_at_100
653
+ value: 33.691916666666664
654
+ - type: map_at_1000
655
+ value: 33.81191666666666
656
+ - type: map_at_3
657
+ value: 29.51625
658
+ - type: map_at_5
659
+ value: 31.168083333333335
660
+ - type: mrr_at_1
661
+ value: 27.96591666666666
662
+ - type: mrr_at_10
663
+ value: 36.528583333333344
664
+ - type: mrr_at_100
665
+ value: 37.404
666
+ - type: mrr_at_1000
667
+ value: 37.464333333333336
668
+ - type: mrr_at_3
669
+ value: 33.92883333333333
670
+ - type: mrr_at_5
671
+ value: 35.41933333333333
672
+ - type: ndcg_at_1
673
+ value: 27.96591666666666
674
+ - type: ndcg_at_10
675
+ value: 37.89141666666666
676
+ - type: ndcg_at_100
677
+ value: 43.23066666666666
678
+ - type: ndcg_at_1000
679
+ value: 45.63258333333333
680
+ - type: ndcg_at_3
681
+ value: 32.811249999999994
682
+ - type: ndcg_at_5
683
+ value: 35.22566666666667
684
+ - type: precision_at_1
685
+ value: 27.96591666666666
686
+ - type: precision_at_10
687
+ value: 6.834083333333332
688
+ - type: precision_at_100
689
+ value: 1.12225
690
+ - type: precision_at_1000
691
+ value: 0.15241666666666667
692
+ - type: precision_at_3
693
+ value: 15.264333333333335
694
+ - type: precision_at_5
695
+ value: 11.039416666666666
696
+ - type: recall_at_1
697
+ value: 23.40791666666667
698
+ - type: recall_at_10
699
+ value: 49.927083333333336
700
+ - type: recall_at_100
701
+ value: 73.44641666666668
702
+ - type: recall_at_1000
703
+ value: 90.19950000000001
704
+ - type: recall_at_3
705
+ value: 35.88341666666667
706
+ - type: recall_at_5
707
+ value: 42.061249999999994
708
+ - type: map_at_1
709
+ value: 19.592000000000002
710
+ - type: map_at_10
711
+ value: 26.895999999999997
712
+ - type: map_at_100
713
+ value: 27.921000000000003
714
+ - type: map_at_1000
715
+ value: 28.02
716
+ - type: map_at_3
717
+ value: 24.883
718
+ - type: map_at_5
719
+ value: 25.812
720
+ - type: mrr_at_1
721
+ value: 22.698999999999998
722
+ - type: mrr_at_10
723
+ value: 29.520999999999997
724
+ - type: mrr_at_100
725
+ value: 30.458000000000002
726
+ - type: mrr_at_1000
727
+ value: 30.526999999999997
728
+ - type: mrr_at_3
729
+ value: 27.633000000000003
730
+ - type: mrr_at_5
731
+ value: 28.483999999999998
732
+ - type: ndcg_at_1
733
+ value: 22.698999999999998
734
+ - type: ndcg_at_10
735
+ value: 31.061
736
+ - type: ndcg_at_100
737
+ value: 36.398
738
+ - type: ndcg_at_1000
739
+ value: 38.89
740
+ - type: ndcg_at_3
741
+ value: 27.149
742
+ - type: ndcg_at_5
743
+ value: 28.627000000000002
744
+ - type: precision_at_1
745
+ value: 22.698999999999998
746
+ - type: precision_at_10
747
+ value: 5.106999999999999
748
+ - type: precision_at_100
749
+ value: 0.857
750
+ - type: precision_at_1000
751
+ value: 0.11499999999999999
752
+ - type: precision_at_3
753
+ value: 11.963
754
+ - type: precision_at_5
755
+ value: 8.221
756
+ - type: recall_at_1
757
+ value: 19.592000000000002
758
+ - type: recall_at_10
759
+ value: 41.329
760
+ - type: recall_at_100
761
+ value: 66.094
762
+ - type: recall_at_1000
763
+ value: 84.511
764
+ - type: recall_at_3
765
+ value: 30.61
766
+ - type: recall_at_5
767
+ value: 34.213
768
+ - type: map_at_1
769
+ value: 14.71
770
+ - type: map_at_10
771
+ value: 20.965
772
+ - type: map_at_100
773
+ value: 21.994
774
+ - type: map_at_1000
775
+ value: 22.133
776
+ - type: map_at_3
777
+ value: 18.741
778
+ - type: map_at_5
779
+ value: 19.951
780
+ - type: mrr_at_1
781
+ value: 18.307000000000002
782
+ - type: mrr_at_10
783
+ value: 24.66
784
+ - type: mrr_at_100
785
+ value: 25.540000000000003
786
+ - type: mrr_at_1000
787
+ value: 25.629
788
+ - type: mrr_at_3
789
+ value: 22.511
790
+ - type: mrr_at_5
791
+ value: 23.72
792
+ - type: ndcg_at_1
793
+ value: 18.307000000000002
794
+ - type: ndcg_at_10
795
+ value: 25.153
796
+ - type: ndcg_at_100
797
+ value: 30.229
798
+ - type: ndcg_at_1000
799
+ value: 33.623
800
+ - type: ndcg_at_3
801
+ value: 21.203
802
+ - type: ndcg_at_5
803
+ value: 23.006999999999998
804
+ - type: precision_at_1
805
+ value: 18.307000000000002
806
+ - type: precision_at_10
807
+ value: 4.725
808
+ - type: precision_at_100
809
+ value: 0.8659999999999999
810
+ - type: precision_at_1000
811
+ value: 0.133
812
+ - type: precision_at_3
813
+ value: 10.14
814
+ - type: precision_at_5
815
+ value: 7.481
816
+ - type: recall_at_1
817
+ value: 14.71
818
+ - type: recall_at_10
819
+ value: 34.087
820
+ - type: recall_at_100
821
+ value: 57.147999999999996
822
+ - type: recall_at_1000
823
+ value: 81.777
824
+ - type: recall_at_3
825
+ value: 22.996
826
+ - type: recall_at_5
827
+ value: 27.73
828
+ - type: map_at_1
829
+ value: 23.472
830
+ - type: map_at_10
831
+ value: 32.699
832
+ - type: map_at_100
833
+ value: 33.867000000000004
834
+ - type: map_at_1000
835
+ value: 33.967000000000006
836
+ - type: map_at_3
837
+ value: 29.718
838
+ - type: map_at_5
839
+ value: 31.345
840
+ - type: mrr_at_1
841
+ value: 28.265
842
+ - type: mrr_at_10
843
+ value: 36.945
844
+ - type: mrr_at_100
845
+ value: 37.794
846
+ - type: mrr_at_1000
847
+ value: 37.857
848
+ - type: mrr_at_3
849
+ value: 34.266000000000005
850
+ - type: mrr_at_5
851
+ value: 35.768
852
+ - type: ndcg_at_1
853
+ value: 28.265
854
+ - type: ndcg_at_10
855
+ value: 38.35
856
+ - type: ndcg_at_100
857
+ value: 43.739
858
+ - type: ndcg_at_1000
859
+ value: 46.087
860
+ - type: ndcg_at_3
861
+ value: 33.004
862
+ - type: ndcg_at_5
863
+ value: 35.411
864
+ - type: precision_at_1
865
+ value: 28.265
866
+ - type: precision_at_10
867
+ value: 6.715999999999999
868
+ - type: precision_at_100
869
+ value: 1.059
870
+ - type: precision_at_1000
871
+ value: 0.13799999999999998
872
+ - type: precision_at_3
873
+ value: 15.299
874
+ - type: precision_at_5
875
+ value: 10.951
876
+ - type: recall_at_1
877
+ value: 23.472
878
+ - type: recall_at_10
879
+ value: 51.413
880
+ - type: recall_at_100
881
+ value: 75.17
882
+ - type: recall_at_1000
883
+ value: 91.577
884
+ - type: recall_at_3
885
+ value: 36.651
886
+ - type: recall_at_5
887
+ value: 42.814
888
+ - type: map_at_1
889
+ value: 23.666
890
+ - type: map_at_10
891
+ value: 32.963
892
+ - type: map_at_100
893
+ value: 34.544999999999995
894
+ - type: map_at_1000
895
+ value: 34.792
896
+ - type: map_at_3
897
+ value: 29.74
898
+ - type: map_at_5
899
+ value: 31.5
900
+ - type: mrr_at_1
901
+ value: 29.051
902
+ - type: mrr_at_10
903
+ value: 38.013000000000005
904
+ - type: mrr_at_100
905
+ value: 38.997
906
+ - type: mrr_at_1000
907
+ value: 39.055
908
+ - type: mrr_at_3
909
+ value: 34.947
910
+ - type: mrr_at_5
911
+ value: 36.815
912
+ - type: ndcg_at_1
913
+ value: 29.051
914
+ - type: ndcg_at_10
915
+ value: 39.361000000000004
916
+ - type: ndcg_at_100
917
+ value: 45.186
918
+ - type: ndcg_at_1000
919
+ value: 47.867
920
+ - type: ndcg_at_3
921
+ value: 33.797
922
+ - type: ndcg_at_5
923
+ value: 36.456
924
+ - type: precision_at_1
925
+ value: 29.051
926
+ - type: precision_at_10
927
+ value: 7.668
928
+ - type: precision_at_100
929
+ value: 1.532
930
+ - type: precision_at_1000
931
+ value: 0.247
932
+ - type: precision_at_3
933
+ value: 15.876000000000001
934
+ - type: precision_at_5
935
+ value: 11.779
936
+ - type: recall_at_1
937
+ value: 23.666
938
+ - type: recall_at_10
939
+ value: 51.858000000000004
940
+ - type: recall_at_100
941
+ value: 77.805
942
+ - type: recall_at_1000
943
+ value: 94.504
944
+ - type: recall_at_3
945
+ value: 36.207
946
+ - type: recall_at_5
947
+ value: 43.094
948
+ - type: map_at_1
949
+ value: 15.662
950
+ - type: map_at_10
951
+ value: 23.594
952
+ - type: map_at_100
953
+ value: 24.593999999999998
954
+ - type: map_at_1000
955
+ value: 24.694
956
+ - type: map_at_3
957
+ value: 20.925
958
+ - type: map_at_5
959
+ value: 22.817999999999998
960
+ - type: mrr_at_1
961
+ value: 17.375
962
+ - type: mrr_at_10
963
+ value: 25.734
964
+ - type: mrr_at_100
965
+ value: 26.586
966
+ - type: mrr_at_1000
967
+ value: 26.671
968
+ - type: mrr_at_3
969
+ value: 23.044
970
+ - type: mrr_at_5
971
+ value: 24.975
972
+ - type: ndcg_at_1
973
+ value: 17.375
974
+ - type: ndcg_at_10
975
+ value: 28.186
976
+ - type: ndcg_at_100
977
+ value: 33.436
978
+ - type: ndcg_at_1000
979
+ value: 36.203
980
+ - type: ndcg_at_3
981
+ value: 23.152
982
+ - type: ndcg_at_5
983
+ value: 26.397
984
+ - type: precision_at_1
985
+ value: 17.375
986
+ - type: precision_at_10
987
+ value: 4.677
988
+ - type: precision_at_100
989
+ value: 0.786
990
+ - type: precision_at_1000
991
+ value: 0.109
992
+ - type: precision_at_3
993
+ value: 10.351
994
+ - type: precision_at_5
995
+ value: 7.985
996
+ - type: recall_at_1
997
+ value: 15.662
998
+ - type: recall_at_10
999
+ value: 40.066
1000
+ - type: recall_at_100
1001
+ value: 65.006
1002
+ - type: recall_at_1000
1003
+ value: 85.94000000000001
1004
+ - type: recall_at_3
1005
+ value: 27.400000000000002
1006
+ - type: recall_at_5
1007
+ value: 35.002
1008
+ - task:
1009
+ type: Retrieval
1010
+ dataset:
1011
+ name: MTEB ClimateFEVER
1012
+ type: climate-fever
1013
+ config: default
1014
+ split: test
1015
+ revision: None
1016
+ metrics:
1017
+ - type: map_at_1
1018
+ value: 8.853
1019
+ - type: map_at_10
1020
+ value: 15.568000000000001
1021
+ - type: map_at_100
1022
+ value: 17.383000000000003
1023
+ - type: map_at_1000
1024
+ value: 17.584
1025
+ - type: map_at_3
1026
+ value: 12.561
1027
+ - type: map_at_5
1028
+ value: 14.056
1029
+ - type: mrr_at_1
1030
+ value: 18.958
1031
+ - type: mrr_at_10
1032
+ value: 28.288000000000004
1033
+ - type: mrr_at_100
1034
+ value: 29.432000000000002
1035
+ - type: mrr_at_1000
1036
+ value: 29.498
1037
+ - type: mrr_at_3
1038
+ value: 25.049
1039
+ - type: mrr_at_5
1040
+ value: 26.857
1041
+ - type: ndcg_at_1
1042
+ value: 18.958
1043
+ - type: ndcg_at_10
1044
+ value: 22.21
1045
+ - type: ndcg_at_100
1046
+ value: 29.596
1047
+ - type: ndcg_at_1000
1048
+ value: 33.583
1049
+ - type: ndcg_at_3
1050
+ value: 16.994999999999997
1051
+ - type: ndcg_at_5
1052
+ value: 18.95
1053
+ - type: precision_at_1
1054
+ value: 18.958
1055
+ - type: precision_at_10
1056
+ value: 7.192
1057
+ - type: precision_at_100
1058
+ value: 1.5
1059
+ - type: precision_at_1000
1060
+ value: 0.22399999999999998
1061
+ - type: precision_at_3
1062
+ value: 12.573
1063
+ - type: precision_at_5
1064
+ value: 10.202
1065
+ - type: recall_at_1
1066
+ value: 8.853
1067
+ - type: recall_at_10
1068
+ value: 28.087
1069
+ - type: recall_at_100
1070
+ value: 53.701
1071
+ - type: recall_at_1000
1072
+ value: 76.29899999999999
1073
+ - type: recall_at_3
1074
+ value: 15.913
1075
+ - type: recall_at_5
1076
+ value: 20.658
1077
+ - task:
1078
+ type: Retrieval
1079
+ dataset:
1080
+ name: MTEB DBPedia
1081
+ type: dbpedia-entity
1082
+ config: default
1083
+ split: test
1084
+ revision: None
1085
+ metrics:
1086
+ - type: map_at_1
1087
+ value: 9.077
1088
+ - type: map_at_10
1089
+ value: 20.788999999999998
1090
+ - type: map_at_100
1091
+ value: 30.429000000000002
1092
+ - type: map_at_1000
1093
+ value: 32.143
1094
+ - type: map_at_3
1095
+ value: 14.692
1096
+ - type: map_at_5
1097
+ value: 17.139
1098
+ - type: mrr_at_1
1099
+ value: 70.75
1100
+ - type: mrr_at_10
1101
+ value: 78.036
1102
+ - type: mrr_at_100
1103
+ value: 78.401
1104
+ - type: mrr_at_1000
1105
+ value: 78.404
1106
+ - type: mrr_at_3
1107
+ value: 76.75
1108
+ - type: mrr_at_5
1109
+ value: 77.47500000000001
1110
+ - type: ndcg_at_1
1111
+ value: 58.12500000000001
1112
+ - type: ndcg_at_10
1113
+ value: 44.015
1114
+ - type: ndcg_at_100
1115
+ value: 49.247
1116
+ - type: ndcg_at_1000
1117
+ value: 56.211999999999996
1118
+ - type: ndcg_at_3
1119
+ value: 49.151
1120
+ - type: ndcg_at_5
1121
+ value: 46.195
1122
+ - type: precision_at_1
1123
+ value: 70.75
1124
+ - type: precision_at_10
1125
+ value: 35.5
1126
+ - type: precision_at_100
1127
+ value: 11.355
1128
+ - type: precision_at_1000
1129
+ value: 2.1950000000000003
1130
+ - type: precision_at_3
1131
+ value: 53.083000000000006
1132
+ - type: precision_at_5
1133
+ value: 44.800000000000004
1134
+ - type: recall_at_1
1135
+ value: 9.077
1136
+ - type: recall_at_10
1137
+ value: 26.259
1138
+ - type: recall_at_100
1139
+ value: 56.547000000000004
1140
+ - type: recall_at_1000
1141
+ value: 78.551
1142
+ - type: recall_at_3
1143
+ value: 16.162000000000003
1144
+ - type: recall_at_5
1145
+ value: 19.753999999999998
1146
+ - task:
1147
+ type: Classification
1148
+ dataset:
1149
+ name: MTEB EmotionClassification
1150
+ type: mteb/emotion
1151
+ config: default
1152
+ split: test
1153
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1154
+ metrics:
1155
+ - type: accuracy
1156
+ value: 49.44500000000001
1157
+ - type: f1
1158
+ value: 44.67067691783401
1159
+ - task:
1160
+ type: Retrieval
1161
+ dataset:
1162
+ name: MTEB FEVER
1163
+ type: fever
1164
+ config: default
1165
+ split: test
1166
+ revision: None
1167
+ metrics:
1168
+ - type: map_at_1
1169
+ value: 68.182
1170
+ - type: map_at_10
1171
+ value: 78.223
1172
+ - type: map_at_100
1173
+ value: 78.498
1174
+ - type: map_at_1000
1175
+ value: 78.512
1176
+ - type: map_at_3
1177
+ value: 76.71
1178
+ - type: map_at_5
1179
+ value: 77.725
1180
+ - type: mrr_at_1
1181
+ value: 73.177
1182
+ - type: mrr_at_10
1183
+ value: 82.513
1184
+ - type: mrr_at_100
1185
+ value: 82.633
1186
+ - type: mrr_at_1000
1187
+ value: 82.635
1188
+ - type: mrr_at_3
1189
+ value: 81.376
1190
+ - type: mrr_at_5
1191
+ value: 82.182
1192
+ - type: ndcg_at_1
1193
+ value: 73.177
1194
+ - type: ndcg_at_10
1195
+ value: 82.829
1196
+ - type: ndcg_at_100
1197
+ value: 83.84
1198
+ - type: ndcg_at_1000
1199
+ value: 84.07900000000001
1200
+ - type: ndcg_at_3
1201
+ value: 80.303
1202
+ - type: ndcg_at_5
1203
+ value: 81.846
1204
+ - type: precision_at_1
1205
+ value: 73.177
1206
+ - type: precision_at_10
1207
+ value: 10.241999999999999
1208
+ - type: precision_at_100
1209
+ value: 1.099
1210
+ - type: precision_at_1000
1211
+ value: 0.11399999999999999
1212
+ - type: precision_at_3
1213
+ value: 31.247999999999998
1214
+ - type: precision_at_5
1215
+ value: 19.697
1216
+ - type: recall_at_1
1217
+ value: 68.182
1218
+ - type: recall_at_10
1219
+ value: 92.657
1220
+ - type: recall_at_100
1221
+ value: 96.709
1222
+ - type: recall_at_1000
1223
+ value: 98.184
1224
+ - type: recall_at_3
1225
+ value: 85.9
1226
+ - type: recall_at_5
1227
+ value: 89.755
1228
+ - task:
1229
+ type: Retrieval
1230
+ dataset:
1231
+ name: MTEB FiQA2018
1232
+ type: fiqa
1233
+ config: default
1234
+ split: test
1235
+ revision: None
1236
+ metrics:
1237
+ - type: map_at_1
1238
+ value: 21.108
1239
+ - type: map_at_10
1240
+ value: 33.342
1241
+ - type: map_at_100
1242
+ value: 35.281
1243
+ - type: map_at_1000
1244
+ value: 35.478
1245
+ - type: map_at_3
1246
+ value: 29.067
1247
+ - type: map_at_5
1248
+ value: 31.563000000000002
1249
+ - type: mrr_at_1
1250
+ value: 41.667
1251
+ - type: mrr_at_10
1252
+ value: 49.913000000000004
1253
+ - type: mrr_at_100
1254
+ value: 50.724000000000004
1255
+ - type: mrr_at_1000
1256
+ value: 50.766
1257
+ - type: mrr_at_3
1258
+ value: 47.504999999999995
1259
+ - type: mrr_at_5
1260
+ value: 49.033
1261
+ - type: ndcg_at_1
1262
+ value: 41.667
1263
+ - type: ndcg_at_10
1264
+ value: 41.144
1265
+ - type: ndcg_at_100
1266
+ value: 48.326
1267
+ - type: ndcg_at_1000
1268
+ value: 51.486
1269
+ - type: ndcg_at_3
1270
+ value: 37.486999999999995
1271
+ - type: ndcg_at_5
1272
+ value: 38.78
1273
+ - type: precision_at_1
1274
+ value: 41.667
1275
+ - type: precision_at_10
1276
+ value: 11.358
1277
+ - type: precision_at_100
1278
+ value: 1.873
1279
+ - type: precision_at_1000
1280
+ value: 0.244
1281
+ - type: precision_at_3
1282
+ value: 25
1283
+ - type: precision_at_5
1284
+ value: 18.519
1285
+ - type: recall_at_1
1286
+ value: 21.108
1287
+ - type: recall_at_10
1288
+ value: 47.249
1289
+ - type: recall_at_100
1290
+ value: 74.52
1291
+ - type: recall_at_1000
1292
+ value: 93.31
1293
+ - type: recall_at_3
1294
+ value: 33.271
1295
+ - type: recall_at_5
1296
+ value: 39.723000000000006
1297
+ - task:
1298
+ type: Retrieval
1299
+ dataset:
1300
+ name: MTEB HotpotQA
1301
+ type: hotpotqa
1302
+ config: default
1303
+ split: test
1304
+ revision: None
1305
+ metrics:
1306
+ - type: map_at_1
1307
+ value: 40.317
1308
+ - type: map_at_10
1309
+ value: 64.861
1310
+ - type: map_at_100
1311
+ value: 65.697
1312
+ - type: map_at_1000
1313
+ value: 65.755
1314
+ - type: map_at_3
1315
+ value: 61.258
1316
+ - type: map_at_5
1317
+ value: 63.590999999999994
1318
+ - type: mrr_at_1
1319
+ value: 80.635
1320
+ - type: mrr_at_10
1321
+ value: 86.528
1322
+ - type: mrr_at_100
1323
+ value: 86.66199999999999
1324
+ - type: mrr_at_1000
1325
+ value: 86.666
1326
+ - type: mrr_at_3
1327
+ value: 85.744
1328
+ - type: mrr_at_5
1329
+ value: 86.24300000000001
1330
+ - type: ndcg_at_1
1331
+ value: 80.635
1332
+ - type: ndcg_at_10
1333
+ value: 73.13199999999999
1334
+ - type: ndcg_at_100
1335
+ value: 75.927
1336
+ - type: ndcg_at_1000
1337
+ value: 76.976
1338
+ - type: ndcg_at_3
1339
+ value: 68.241
1340
+ - type: ndcg_at_5
1341
+ value: 71.071
1342
+ - type: precision_at_1
1343
+ value: 80.635
1344
+ - type: precision_at_10
1345
+ value: 15.326
1346
+ - type: precision_at_100
1347
+ value: 1.7500000000000002
1348
+ - type: precision_at_1000
1349
+ value: 0.189
1350
+ - type: precision_at_3
1351
+ value: 43.961
1352
+ - type: precision_at_5
1353
+ value: 28.599999999999998
1354
+ - type: recall_at_1
1355
+ value: 40.317
1356
+ - type: recall_at_10
1357
+ value: 76.631
1358
+ - type: recall_at_100
1359
+ value: 87.495
1360
+ - type: recall_at_1000
1361
+ value: 94.362
1362
+ - type: recall_at_3
1363
+ value: 65.94200000000001
1364
+ - type: recall_at_5
1365
+ value: 71.499
1366
+ - task:
1367
+ type: Classification
1368
+ dataset:
1369
+ name: MTEB ImdbClassification
1370
+ type: mteb/imdb
1371
+ config: default
1372
+ split: test
1373
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1374
+ metrics:
1375
+ - type: accuracy
1376
+ value: 91.686
1377
+ - type: ap
1378
+ value: 87.5577120393173
1379
+ - type: f1
1380
+ value: 91.6629447355139
1381
+ - task:
1382
+ type: Retrieval
1383
+ dataset:
1384
+ name: MTEB MSMARCO
1385
+ type: msmarco
1386
+ config: default
1387
+ split: dev
1388
+ revision: None
1389
+ metrics:
1390
+ - type: map_at_1
1391
+ value: 23.702
1392
+ - type: map_at_10
1393
+ value: 36.414
1394
+ - type: map_at_100
1395
+ value: 37.561
1396
+ - type: map_at_1000
1397
+ value: 37.605
1398
+ - type: map_at_3
1399
+ value: 32.456
1400
+ - type: map_at_5
1401
+ value: 34.827000000000005
1402
+ - type: mrr_at_1
1403
+ value: 24.355
1404
+ - type: mrr_at_10
1405
+ value: 37.01
1406
+ - type: mrr_at_100
1407
+ value: 38.085
1408
+ - type: mrr_at_1000
1409
+ value: 38.123000000000005
1410
+ - type: mrr_at_3
1411
+ value: 33.117999999999995
1412
+ - type: mrr_at_5
1413
+ value: 35.452
1414
+ - type: ndcg_at_1
1415
+ value: 24.384
1416
+ - type: ndcg_at_10
1417
+ value: 43.456
1418
+ - type: ndcg_at_100
1419
+ value: 48.892
1420
+ - type: ndcg_at_1000
1421
+ value: 49.964
1422
+ - type: ndcg_at_3
1423
+ value: 35.475
1424
+ - type: ndcg_at_5
1425
+ value: 39.711
1426
+ - type: precision_at_1
1427
+ value: 24.384
1428
+ - type: precision_at_10
1429
+ value: 6.7940000000000005
1430
+ - type: precision_at_100
1431
+ value: 0.951
1432
+ - type: precision_at_1000
1433
+ value: 0.104
1434
+ - type: precision_at_3
1435
+ value: 15.052999999999999
1436
+ - type: precision_at_5
1437
+ value: 11.189
1438
+ - type: recall_at_1
1439
+ value: 23.702
1440
+ - type: recall_at_10
1441
+ value: 65.057
1442
+ - type: recall_at_100
1443
+ value: 90.021
1444
+ - type: recall_at_1000
1445
+ value: 98.142
1446
+ - type: recall_at_3
1447
+ value: 43.551
1448
+ - type: recall_at_5
1449
+ value: 53.738
1450
+ - task:
1451
+ type: Classification
1452
+ dataset:
1453
+ name: MTEB MTOPDomainClassification (en)
1454
+ type: mteb/mtop_domain
1455
+ config: en
1456
+ split: test
1457
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1458
+ metrics:
1459
+ - type: accuracy
1460
+ value: 94.62380300957591
1461
+ - type: f1
1462
+ value: 94.49871222100734
1463
+ - task:
1464
+ type: Classification
1465
+ dataset:
1466
+ name: MTEB MTOPIntentClassification (en)
1467
+ type: mteb/mtop_intent
1468
+ config: en
1469
+ split: test
1470
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1471
+ metrics:
1472
+ - type: accuracy
1473
+ value: 77.14090287277702
1474
+ - type: f1
1475
+ value: 60.32101258220515
1476
+ - task:
1477
+ type: Classification
1478
+ dataset:
1479
+ name: MTEB MassiveIntentClassification (en)
1480
+ type: mteb/amazon_massive_intent
1481
+ config: en
1482
+ split: test
1483
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1484
+ metrics:
1485
+ - type: accuracy
1486
+ value: 73.84330867518494
1487
+ - type: f1
1488
+ value: 71.92248688515255
1489
+ - task:
1490
+ type: Classification
1491
+ dataset:
1492
+ name: MTEB MassiveScenarioClassification (en)
1493
+ type: mteb/amazon_massive_scenario
1494
+ config: en
1495
+ split: test
1496
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1497
+ metrics:
1498
+ - type: accuracy
1499
+ value: 78.10692669804976
1500
+ - type: f1
1501
+ value: 77.9904839122866
1502
+ - task:
1503
+ type: Clustering
1504
+ dataset:
1505
+ name: MTEB MedrxivClusteringP2P
1506
+ type: mteb/medrxiv-clustering-p2p
1507
+ config: default
1508
+ split: test
1509
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1510
+ metrics:
1511
+ - type: v_measure
1512
+ value: 31.822988923078444
1513
+ - task:
1514
+ type: Clustering
1515
+ dataset:
1516
+ name: MTEB MedrxivClusteringS2S
1517
+ type: mteb/medrxiv-clustering-s2s
1518
+ config: default
1519
+ split: test
1520
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1521
+ metrics:
1522
+ - type: v_measure
1523
+ value: 30.38394880253403
1524
+ - task:
1525
+ type: Reranking
1526
+ dataset:
1527
+ name: MTEB MindSmallReranking
1528
+ type: mteb/mind_small
1529
+ config: default
1530
+ split: test
1531
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1532
+ metrics:
1533
+ - type: map
1534
+ value: 31.82504612539082
1535
+ - type: mrr
1536
+ value: 32.84462298174977
1537
+ - task:
1538
+ type: Retrieval
1539
+ dataset:
1540
+ name: MTEB NFCorpus
1541
+ type: nfcorpus
1542
+ config: default
1543
+ split: test
1544
+ revision: None
1545
+ metrics:
1546
+ - type: map_at_1
1547
+ value: 6.029
1548
+ - type: map_at_10
1549
+ value: 14.088999999999999
1550
+ - type: map_at_100
1551
+ value: 17.601
1552
+ - type: map_at_1000
1553
+ value: 19.144
1554
+ - type: map_at_3
1555
+ value: 10.156
1556
+ - type: map_at_5
1557
+ value: 11.892
1558
+ - type: mrr_at_1
1559
+ value: 46.44
1560
+ - type: mrr_at_10
1561
+ value: 56.596999999999994
1562
+ - type: mrr_at_100
1563
+ value: 57.11000000000001
1564
+ - type: mrr_at_1000
1565
+ value: 57.14
1566
+ - type: mrr_at_3
1567
+ value: 54.334
1568
+ - type: mrr_at_5
1569
+ value: 55.774
1570
+ - type: ndcg_at_1
1571
+ value: 44.891999999999996
1572
+ - type: ndcg_at_10
1573
+ value: 37.134
1574
+ - type: ndcg_at_100
1575
+ value: 33.652
1576
+ - type: ndcg_at_1000
1577
+ value: 42.548
1578
+ - type: ndcg_at_3
1579
+ value: 41.851
1580
+ - type: ndcg_at_5
1581
+ value: 39.842
1582
+ - type: precision_at_1
1583
+ value: 46.44
1584
+ - type: precision_at_10
1585
+ value: 27.647
1586
+ - type: precision_at_100
1587
+ value: 8.309999999999999
1588
+ - type: precision_at_1000
1589
+ value: 2.146
1590
+ - type: precision_at_3
1591
+ value: 39.422000000000004
1592
+ - type: precision_at_5
1593
+ value: 34.675
1594
+ - type: recall_at_1
1595
+ value: 6.029
1596
+ - type: recall_at_10
1597
+ value: 18.907
1598
+ - type: recall_at_100
1599
+ value: 33.76
1600
+ - type: recall_at_1000
1601
+ value: 65.14999999999999
1602
+ - type: recall_at_3
1603
+ value: 11.584999999999999
1604
+ - type: recall_at_5
1605
+ value: 14.626
1606
+ - task:
1607
+ type: Retrieval
1608
+ dataset:
1609
+ name: MTEB NQ
1610
+ type: nq
1611
+ config: default
1612
+ split: test
1613
+ revision: None
1614
+ metrics:
1615
+ - type: map_at_1
1616
+ value: 39.373000000000005
1617
+ - type: map_at_10
1618
+ value: 55.836
1619
+ - type: map_at_100
1620
+ value: 56.611999999999995
1621
+ - type: map_at_1000
1622
+ value: 56.63
1623
+ - type: map_at_3
1624
+ value: 51.747
1625
+ - type: map_at_5
1626
+ value: 54.337999999999994
1627
+ - type: mrr_at_1
1628
+ value: 44.147999999999996
1629
+ - type: mrr_at_10
1630
+ value: 58.42699999999999
1631
+ - type: mrr_at_100
1632
+ value: 58.902
1633
+ - type: mrr_at_1000
1634
+ value: 58.914
1635
+ - type: mrr_at_3
1636
+ value: 55.156000000000006
1637
+ - type: mrr_at_5
1638
+ value: 57.291000000000004
1639
+ - type: ndcg_at_1
1640
+ value: 44.119
1641
+ - type: ndcg_at_10
1642
+ value: 63.444
1643
+ - type: ndcg_at_100
1644
+ value: 66.40599999999999
1645
+ - type: ndcg_at_1000
1646
+ value: 66.822
1647
+ - type: ndcg_at_3
1648
+ value: 55.962
1649
+ - type: ndcg_at_5
1650
+ value: 60.228
1651
+ - type: precision_at_1
1652
+ value: 44.119
1653
+ - type: precision_at_10
1654
+ value: 10.006
1655
+ - type: precision_at_100
1656
+ value: 1.17
1657
+ - type: precision_at_1000
1658
+ value: 0.121
1659
+ - type: precision_at_3
1660
+ value: 25.135
1661
+ - type: precision_at_5
1662
+ value: 17.59
1663
+ - type: recall_at_1
1664
+ value: 39.373000000000005
1665
+ - type: recall_at_10
1666
+ value: 83.78999999999999
1667
+ - type: recall_at_100
1668
+ value: 96.246
1669
+ - type: recall_at_1000
1670
+ value: 99.324
1671
+ - type: recall_at_3
1672
+ value: 64.71900000000001
1673
+ - type: recall_at_5
1674
+ value: 74.508
1675
+ - task:
1676
+ type: Retrieval
1677
+ dataset:
1678
+ name: MTEB QuoraRetrieval
1679
+ type: quora
1680
+ config: default
1681
+ split: test
1682
+ revision: None
1683
+ metrics:
1684
+ - type: map_at_1
1685
+ value: 69.199
1686
+ - type: map_at_10
1687
+ value: 82.892
1688
+ - type: map_at_100
1689
+ value: 83.578
1690
+ - type: map_at_1000
1691
+ value: 83.598
1692
+ - type: map_at_3
1693
+ value: 79.948
1694
+ - type: map_at_5
1695
+ value: 81.779
1696
+ - type: mrr_at_1
1697
+ value: 79.67
1698
+ - type: mrr_at_10
1699
+ value: 86.115
1700
+ - type: mrr_at_100
1701
+ value: 86.249
1702
+ - type: mrr_at_1000
1703
+ value: 86.251
1704
+ - type: mrr_at_3
1705
+ value: 85.08200000000001
1706
+ - type: mrr_at_5
1707
+ value: 85.783
1708
+ - type: ndcg_at_1
1709
+ value: 79.67
1710
+ - type: ndcg_at_10
1711
+ value: 86.839
1712
+ - type: ndcg_at_100
1713
+ value: 88.252
1714
+ - type: ndcg_at_1000
1715
+ value: 88.401
1716
+ - type: ndcg_at_3
1717
+ value: 83.86200000000001
1718
+ - type: ndcg_at_5
1719
+ value: 85.473
1720
+ - type: precision_at_1
1721
+ value: 79.67
1722
+ - type: precision_at_10
1723
+ value: 13.19
1724
+ - type: precision_at_100
1725
+ value: 1.521
1726
+ - type: precision_at_1000
1727
+ value: 0.157
1728
+ - type: precision_at_3
1729
+ value: 36.677
1730
+ - type: precision_at_5
1731
+ value: 24.118000000000002
1732
+ - type: recall_at_1
1733
+ value: 69.199
1734
+ - type: recall_at_10
1735
+ value: 94.321
1736
+ - type: recall_at_100
1737
+ value: 99.20400000000001
1738
+ - type: recall_at_1000
1739
+ value: 99.947
1740
+ - type: recall_at_3
1741
+ value: 85.787
1742
+ - type: recall_at_5
1743
+ value: 90.365
1744
+ - task:
1745
+ type: Clustering
1746
+ dataset:
1747
+ name: MTEB RedditClustering
1748
+ type: mteb/reddit-clustering
1749
+ config: default
1750
+ split: test
1751
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1752
+ metrics:
1753
+ - type: v_measure
1754
+ value: 55.82810046856353
1755
+ - task:
1756
+ type: Clustering
1757
+ dataset:
1758
+ name: MTEB RedditClusteringP2P
1759
+ type: mteb/reddit-clustering-p2p
1760
+ config: default
1761
+ split: test
1762
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1763
+ metrics:
1764
+ - type: v_measure
1765
+ value: 63.38132611783628
1766
+ - task:
1767
+ type: Retrieval
1768
+ dataset:
1769
+ name: MTEB SCIDOCS
1770
+ type: scidocs
1771
+ config: default
1772
+ split: test
1773
+ revision: None
1774
+ metrics:
1775
+ - type: map_at_1
1776
+ value: 5.127000000000001
1777
+ - type: map_at_10
1778
+ value: 12.235
1779
+ - type: map_at_100
1780
+ value: 14.417
1781
+ - type: map_at_1000
1782
+ value: 14.75
1783
+ - type: map_at_3
1784
+ value: 8.906
1785
+ - type: map_at_5
1786
+ value: 10.591000000000001
1787
+ - type: mrr_at_1
1788
+ value: 25.2
1789
+ - type: mrr_at_10
1790
+ value: 35.879
1791
+ - type: mrr_at_100
1792
+ value: 36.935
1793
+ - type: mrr_at_1000
1794
+ value: 36.997
1795
+ - type: mrr_at_3
1796
+ value: 32.783
1797
+ - type: mrr_at_5
1798
+ value: 34.367999999999995
1799
+ - type: ndcg_at_1
1800
+ value: 25.2
1801
+ - type: ndcg_at_10
1802
+ value: 20.509
1803
+ - type: ndcg_at_100
1804
+ value: 28.67
1805
+ - type: ndcg_at_1000
1806
+ value: 34.42
1807
+ - type: ndcg_at_3
1808
+ value: 19.948
1809
+ - type: ndcg_at_5
1810
+ value: 17.166
1811
+ - type: precision_at_1
1812
+ value: 25.2
1813
+ - type: precision_at_10
1814
+ value: 10.440000000000001
1815
+ - type: precision_at_100
1816
+ value: 2.214
1817
+ - type: precision_at_1000
1818
+ value: 0.359
1819
+ - type: precision_at_3
1820
+ value: 18.533
1821
+ - type: precision_at_5
1822
+ value: 14.860000000000001
1823
+ - type: recall_at_1
1824
+ value: 5.127000000000001
1825
+ - type: recall_at_10
1826
+ value: 21.147
1827
+ - type: recall_at_100
1828
+ value: 44.946999999999996
1829
+ - type: recall_at_1000
1830
+ value: 72.89
1831
+ - type: recall_at_3
1832
+ value: 11.277
1833
+ - type: recall_at_5
1834
+ value: 15.042
1835
+ - task:
1836
+ type: STS
1837
+ dataset:
1838
+ name: MTEB SICK-R
1839
+ type: mteb/sickr-sts
1840
+ config: default
1841
+ split: test
1842
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1843
+ metrics:
1844
+ - type: cos_sim_pearson
1845
+ value: 83.0373011786213
1846
+ - type: cos_sim_spearman
1847
+ value: 79.27889560856613
1848
+ - type: euclidean_pearson
1849
+ value: 80.31186315495655
1850
+ - type: euclidean_spearman
1851
+ value: 79.41630415280811
1852
+ - type: manhattan_pearson
1853
+ value: 80.31755140442013
1854
+ - type: manhattan_spearman
1855
+ value: 79.43069870027611
1856
+ - task:
1857
+ type: STS
1858
+ dataset:
1859
+ name: MTEB STS12
1860
+ type: mteb/sts12-sts
1861
+ config: default
1862
+ split: test
1863
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1864
+ metrics:
1865
+ - type: cos_sim_pearson
1866
+ value: 84.8659751342045
1867
+ - type: cos_sim_spearman
1868
+ value: 76.95377612997667
1869
+ - type: euclidean_pearson
1870
+ value: 81.24552945497848
1871
+ - type: euclidean_spearman
1872
+ value: 77.18236963555253
1873
+ - type: manhattan_pearson
1874
+ value: 81.26477607759037
1875
+ - type: manhattan_spearman
1876
+ value: 77.13821753062756
1877
+ - task:
1878
+ type: STS
1879
+ dataset:
1880
+ name: MTEB STS13
1881
+ type: mteb/sts13-sts
1882
+ config: default
1883
+ split: test
1884
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1885
+ metrics:
1886
+ - type: cos_sim_pearson
1887
+ value: 83.34597139044875
1888
+ - type: cos_sim_spearman
1889
+ value: 84.124169425592
1890
+ - type: euclidean_pearson
1891
+ value: 83.68590721511401
1892
+ - type: euclidean_spearman
1893
+ value: 84.18846190846398
1894
+ - type: manhattan_pearson
1895
+ value: 83.57630235061498
1896
+ - type: manhattan_spearman
1897
+ value: 84.10244043726902
1898
+ - task:
1899
+ type: STS
1900
+ dataset:
1901
+ name: MTEB STS14
1902
+ type: mteb/sts14-sts
1903
+ config: default
1904
+ split: test
1905
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
1906
+ metrics:
1907
+ - type: cos_sim_pearson
1908
+ value: 82.67641885599572
1909
+ - type: cos_sim_spearman
1910
+ value: 80.46450725650428
1911
+ - type: euclidean_pearson
1912
+ value: 81.61645042715865
1913
+ - type: euclidean_spearman
1914
+ value: 80.61418394236874
1915
+ - type: manhattan_pearson
1916
+ value: 81.55712034928871
1917
+ - type: manhattan_spearman
1918
+ value: 80.57905670523951
1919
+ - task:
1920
+ type: STS
1921
+ dataset:
1922
+ name: MTEB STS15
1923
+ type: mteb/sts15-sts
1924
+ config: default
1925
+ split: test
1926
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
1927
+ metrics:
1928
+ - type: cos_sim_pearson
1929
+ value: 88.86650310886782
1930
+ - type: cos_sim_spearman
1931
+ value: 89.76081629222328
1932
+ - type: euclidean_pearson
1933
+ value: 89.1530747029954
1934
+ - type: euclidean_spearman
1935
+ value: 89.80990657280248
1936
+ - type: manhattan_pearson
1937
+ value: 89.10640563278132
1938
+ - type: manhattan_spearman
1939
+ value: 89.76282108434047
1940
+ - task:
1941
+ type: STS
1942
+ dataset:
1943
+ name: MTEB STS16
1944
+ type: mteb/sts16-sts
1945
+ config: default
1946
+ split: test
1947
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
1948
+ metrics:
1949
+ - type: cos_sim_pearson
1950
+ value: 83.93864027911118
1951
+ - type: cos_sim_spearman
1952
+ value: 85.47096193999023
1953
+ - type: euclidean_pearson
1954
+ value: 85.03141840870533
1955
+ - type: euclidean_spearman
1956
+ value: 85.43124029598181
1957
+ - type: manhattan_pearson
1958
+ value: 84.99002664393512
1959
+ - type: manhattan_spearman
1960
+ value: 85.39169195120834
1961
+ - task:
1962
+ type: STS
1963
+ dataset:
1964
+ name: MTEB STS17 (en-en)
1965
+ type: mteb/sts17-crosslingual-sts
1966
+ config: en-en
1967
+ split: test
1968
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
1969
+ metrics:
1970
+ - type: cos_sim_pearson
1971
+ value: 88.7045343749832
1972
+ - type: cos_sim_spearman
1973
+ value: 89.03262221146677
1974
+ - type: euclidean_pearson
1975
+ value: 89.56078218264365
1976
+ - type: euclidean_spearman
1977
+ value: 89.17827006466868
1978
+ - type: manhattan_pearson
1979
+ value: 89.52717595468582
1980
+ - type: manhattan_spearman
1981
+ value: 89.15878115952923
1982
+ - task:
1983
+ type: STS
1984
+ dataset:
1985
+ name: MTEB STS22 (en)
1986
+ type: mteb/sts22-crosslingual-sts
1987
+ config: en
1988
+ split: test
1989
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
1990
+ metrics:
1991
+ - type: cos_sim_pearson
1992
+ value: 64.20191302875551
1993
+ - type: cos_sim_spearman
1994
+ value: 64.11446552557646
1995
+ - type: euclidean_pearson
1996
+ value: 64.6918197393619
1997
+ - type: euclidean_spearman
1998
+ value: 63.440182631197764
1999
+ - type: manhattan_pearson
2000
+ value: 64.55692904121835
2001
+ - type: manhattan_spearman
2002
+ value: 63.424877742756266
2003
+ - task:
2004
+ type: STS
2005
+ dataset:
2006
+ name: MTEB STSBenchmark
2007
+ type: mteb/stsbenchmark-sts
2008
+ config: default
2009
+ split: test
2010
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2011
+ metrics:
2012
+ - type: cos_sim_pearson
2013
+ value: 86.37793104662344
2014
+ - type: cos_sim_spearman
2015
+ value: 87.7357802629067
2016
+ - type: euclidean_pearson
2017
+ value: 87.4286301545109
2018
+ - type: euclidean_spearman
2019
+ value: 87.78452920777421
2020
+ - type: manhattan_pearson
2021
+ value: 87.42445169331255
2022
+ - type: manhattan_spearman
2023
+ value: 87.78537677249598
2024
+ - task:
2025
+ type: Reranking
2026
+ dataset:
2027
+ name: MTEB SciDocsRR
2028
+ type: mteb/scidocs-reranking
2029
+ config: default
2030
+ split: test
2031
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2032
+ metrics:
2033
+ - type: map
2034
+ value: 84.31465405081792
2035
+ - type: mrr
2036
+ value: 95.7173781193389
2037
+ - task:
2038
+ type: Retrieval
2039
+ dataset:
2040
+ name: MTEB SciFact
2041
+ type: scifact
2042
+ config: default
2043
+ split: test
2044
+ revision: None
2045
+ metrics:
2046
+ - type: map_at_1
2047
+ value: 57.760999999999996
2048
+ - type: map_at_10
2049
+ value: 67.904
2050
+ - type: map_at_100
2051
+ value: 68.539
2052
+ - type: map_at_1000
2053
+ value: 68.562
2054
+ - type: map_at_3
2055
+ value: 65.415
2056
+ - type: map_at_5
2057
+ value: 66.788
2058
+ - type: mrr_at_1
2059
+ value: 60.333000000000006
2060
+ - type: mrr_at_10
2061
+ value: 68.797
2062
+ - type: mrr_at_100
2063
+ value: 69.236
2064
+ - type: mrr_at_1000
2065
+ value: 69.257
2066
+ - type: mrr_at_3
2067
+ value: 66.667
2068
+ - type: mrr_at_5
2069
+ value: 67.967
2070
+ - type: ndcg_at_1
2071
+ value: 60.333000000000006
2072
+ - type: ndcg_at_10
2073
+ value: 72.24199999999999
2074
+ - type: ndcg_at_100
2075
+ value: 74.86
2076
+ - type: ndcg_at_1000
2077
+ value: 75.354
2078
+ - type: ndcg_at_3
2079
+ value: 67.93400000000001
2080
+ - type: ndcg_at_5
2081
+ value: 70.02199999999999
2082
+ - type: precision_at_1
2083
+ value: 60.333000000000006
2084
+ - type: precision_at_10
2085
+ value: 9.533
2086
+ - type: precision_at_100
2087
+ value: 1.09
2088
+ - type: precision_at_1000
2089
+ value: 0.11299999999999999
2090
+ - type: precision_at_3
2091
+ value: 26.778000000000002
2092
+ - type: precision_at_5
2093
+ value: 17.467
2094
+ - type: recall_at_1
2095
+ value: 57.760999999999996
2096
+ - type: recall_at_10
2097
+ value: 84.383
2098
+ - type: recall_at_100
2099
+ value: 96.267
2100
+ - type: recall_at_1000
2101
+ value: 100
2102
+ - type: recall_at_3
2103
+ value: 72.628
2104
+ - type: recall_at_5
2105
+ value: 78.094
2106
+ - task:
2107
+ type: PairClassification
2108
+ dataset:
2109
+ name: MTEB SprintDuplicateQuestions
2110
+ type: mteb/sprintduplicatequestions-pairclassification
2111
+ config: default
2112
+ split: test
2113
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2114
+ metrics:
2115
+ - type: cos_sim_accuracy
2116
+ value: 99.8029702970297
2117
+ - type: cos_sim_ap
2118
+ value: 94.9210324173411
2119
+ - type: cos_sim_f1
2120
+ value: 89.8521162672106
2121
+ - type: cos_sim_precision
2122
+ value: 91.67533818938605
2123
+ - type: cos_sim_recall
2124
+ value: 88.1
2125
+ - type: dot_accuracy
2126
+ value: 99.69504950495049
2127
+ - type: dot_ap
2128
+ value: 90.4919719146181
2129
+ - type: dot_f1
2130
+ value: 84.72289156626506
2131
+ - type: dot_precision
2132
+ value: 81.76744186046511
2133
+ - type: dot_recall
2134
+ value: 87.9
2135
+ - type: euclidean_accuracy
2136
+ value: 99.79702970297029
2137
+ - type: euclidean_ap
2138
+ value: 94.87827463795753
2139
+ - type: euclidean_f1
2140
+ value: 89.55680081507896
2141
+ - type: euclidean_precision
2142
+ value: 91.27725856697819
2143
+ - type: euclidean_recall
2144
+ value: 87.9
2145
+ - type: manhattan_accuracy
2146
+ value: 99.7990099009901
2147
+ - type: manhattan_ap
2148
+ value: 94.87587025149682
2149
+ - type: manhattan_f1
2150
+ value: 89.76298537569339
2151
+ - type: manhattan_precision
2152
+ value: 90.53916581892166
2153
+ - type: manhattan_recall
2154
+ value: 89
2155
+ - type: max_accuracy
2156
+ value: 99.8029702970297
2157
+ - type: max_ap
2158
+ value: 94.9210324173411
2159
+ - type: max_f1
2160
+ value: 89.8521162672106
2161
+ - task:
2162
+ type: Clustering
2163
+ dataset:
2164
+ name: MTEB StackExchangeClustering
2165
+ type: mteb/stackexchange-clustering
2166
+ config: default
2167
+ split: test
2168
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2169
+ metrics:
2170
+ - type: v_measure
2171
+ value: 65.92385753948724
2172
+ - task:
2173
+ type: Clustering
2174
+ dataset:
2175
+ name: MTEB StackExchangeClusteringP2P
2176
+ type: mteb/stackexchange-clustering-p2p
2177
+ config: default
2178
+ split: test
2179
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2180
+ metrics:
2181
+ - type: v_measure
2182
+ value: 33.671756975431144
2183
+ - task:
2184
+ type: Reranking
2185
+ dataset:
2186
+ name: MTEB StackOverflowDupQuestions
2187
+ type: mteb/stackoverflowdupquestions-reranking
2188
+ config: default
2189
+ split: test
2190
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2191
+ metrics:
2192
+ - type: map
2193
+ value: 50.677928036739004
2194
+ - type: mrr
2195
+ value: 51.56413133435193
2196
+ - task:
2197
+ type: Summarization
2198
+ dataset:
2199
+ name: MTEB SummEval
2200
+ type: mteb/summeval
2201
+ config: default
2202
+ split: test
2203
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2204
+ metrics:
2205
+ - type: cos_sim_pearson
2206
+ value: 30.523589340819683
2207
+ - type: cos_sim_spearman
2208
+ value: 30.187407518823235
2209
+ - type: dot_pearson
2210
+ value: 29.039713969699015
2211
+ - type: dot_spearman
2212
+ value: 29.114740651155508
2213
+ - task:
2214
+ type: Retrieval
2215
+ dataset:
2216
+ name: MTEB TRECCOVID
2217
+ type: trec-covid
2218
+ config: default
2219
+ split: test
2220
+ revision: None
2221
+ metrics:
2222
+ - type: map_at_1
2223
+ value: 0.211
2224
+ - type: map_at_10
2225
+ value: 1.6199999999999999
2226
+ - type: map_at_100
2227
+ value: 8.658000000000001
2228
+ - type: map_at_1000
2229
+ value: 21.538
2230
+ - type: map_at_3
2231
+ value: 0.575
2232
+ - type: map_at_5
2233
+ value: 0.919
2234
+ - type: mrr_at_1
2235
+ value: 78
2236
+ - type: mrr_at_10
2237
+ value: 86.18599999999999
2238
+ - type: mrr_at_100
2239
+ value: 86.18599999999999
2240
+ - type: mrr_at_1000
2241
+ value: 86.18599999999999
2242
+ - type: mrr_at_3
2243
+ value: 85
2244
+ - type: mrr_at_5
2245
+ value: 85.9
2246
+ - type: ndcg_at_1
2247
+ value: 74
2248
+ - type: ndcg_at_10
2249
+ value: 66.542
2250
+ - type: ndcg_at_100
2251
+ value: 50.163999999999994
2252
+ - type: ndcg_at_1000
2253
+ value: 45.696999999999996
2254
+ - type: ndcg_at_3
2255
+ value: 71.531
2256
+ - type: ndcg_at_5
2257
+ value: 70.45
2258
+ - type: precision_at_1
2259
+ value: 78
2260
+ - type: precision_at_10
2261
+ value: 69.39999999999999
2262
+ - type: precision_at_100
2263
+ value: 51.06
2264
+ - type: precision_at_1000
2265
+ value: 20.022000000000002
2266
+ - type: precision_at_3
2267
+ value: 76
2268
+ - type: precision_at_5
2269
+ value: 74.8
2270
+ - type: recall_at_1
2271
+ value: 0.211
2272
+ - type: recall_at_10
2273
+ value: 1.813
2274
+ - type: recall_at_100
2275
+ value: 12.098
2276
+ - type: recall_at_1000
2277
+ value: 42.618
2278
+ - type: recall_at_3
2279
+ value: 0.603
2280
+ - type: recall_at_5
2281
+ value: 0.987
2282
+ - task:
2283
+ type: Retrieval
2284
+ dataset:
2285
+ name: MTEB Touche2020
2286
+ type: webis-touche2020
2287
+ config: default
2288
+ split: test
2289
+ revision: None
2290
+ metrics:
2291
+ - type: map_at_1
2292
+ value: 2.2079999999999997
2293
+ - type: map_at_10
2294
+ value: 7.777000000000001
2295
+ - type: map_at_100
2296
+ value: 12.825000000000001
2297
+ - type: map_at_1000
2298
+ value: 14.196
2299
+ - type: map_at_3
2300
+ value: 4.285
2301
+ - type: map_at_5
2302
+ value: 6.177
2303
+ - type: mrr_at_1
2304
+ value: 30.612000000000002
2305
+ - type: mrr_at_10
2306
+ value: 42.635
2307
+ - type: mrr_at_100
2308
+ value: 43.955
2309
+ - type: mrr_at_1000
2310
+ value: 43.955
2311
+ - type: mrr_at_3
2312
+ value: 38.435
2313
+ - type: mrr_at_5
2314
+ value: 41.088
2315
+ - type: ndcg_at_1
2316
+ value: 28.571
2317
+ - type: ndcg_at_10
2318
+ value: 20.666999999999998
2319
+ - type: ndcg_at_100
2320
+ value: 31.840000000000003
2321
+ - type: ndcg_at_1000
2322
+ value: 43.191
2323
+ - type: ndcg_at_3
2324
+ value: 23.45
2325
+ - type: ndcg_at_5
2326
+ value: 22.994
2327
+ - type: precision_at_1
2328
+ value: 30.612000000000002
2329
+ - type: precision_at_10
2330
+ value: 17.959
2331
+ - type: precision_at_100
2332
+ value: 6.755
2333
+ - type: precision_at_1000
2334
+ value: 1.4200000000000002
2335
+ - type: precision_at_3
2336
+ value: 23.810000000000002
2337
+ - type: precision_at_5
2338
+ value: 23.673
2339
+ - type: recall_at_1
2340
+ value: 2.2079999999999997
2341
+ - type: recall_at_10
2342
+ value: 13.144
2343
+ - type: recall_at_100
2344
+ value: 42.491
2345
+ - type: recall_at_1000
2346
+ value: 77.04299999999999
2347
+ - type: recall_at_3
2348
+ value: 5.3469999999999995
2349
+ - type: recall_at_5
2350
+ value: 9.139
2351
+ - task:
2352
+ type: Classification
2353
+ dataset:
2354
+ name: MTEB ToxicConversationsClassification
2355
+ type: mteb/toxic_conversations_50k
2356
+ config: default
2357
+ split: test
2358
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2359
+ metrics:
2360
+ - type: accuracy
2361
+ value: 70.9044
2362
+ - type: ap
2363
+ value: 14.625783489340755
2364
+ - type: f1
2365
+ value: 54.814936562590546
2366
+ - task:
2367
+ type: Classification
2368
+ dataset:
2369
+ name: MTEB TweetSentimentExtractionClassification
2370
+ type: mteb/tweet_sentiment_extraction
2371
+ config: default
2372
+ split: test
2373
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2374
+ metrics:
2375
+ - type: accuracy
2376
+ value: 60.94227504244483
2377
+ - type: f1
2378
+ value: 61.22516038508854
2379
+ - task:
2380
+ type: Clustering
2381
+ dataset:
2382
+ name: MTEB TwentyNewsgroupsClustering
2383
+ type: mteb/twentynewsgroups-clustering
2384
+ config: default
2385
+ split: test
2386
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2387
+ metrics:
2388
+ - type: v_measure
2389
+ value: 49.602409155145864
2390
+ - task:
2391
+ type: PairClassification
2392
+ dataset:
2393
+ name: MTEB TwitterSemEval2015
2394
+ type: mteb/twittersemeval2015-pairclassification
2395
+ config: default
2396
+ split: test
2397
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2398
+ metrics:
2399
+ - type: cos_sim_accuracy
2400
+ value: 86.94641473445789
2401
+ - type: cos_sim_ap
2402
+ value: 76.91572747061197
2403
+ - type: cos_sim_f1
2404
+ value: 70.14348097317529
2405
+ - type: cos_sim_precision
2406
+ value: 66.53254437869822
2407
+ - type: cos_sim_recall
2408
+ value: 74.1688654353562
2409
+ - type: dot_accuracy
2410
+ value: 84.80061989628658
2411
+ - type: dot_ap
2412
+ value: 70.7952548895177
2413
+ - type: dot_f1
2414
+ value: 65.44780728844965
2415
+ - type: dot_precision
2416
+ value: 61.53310104529617
2417
+ - type: dot_recall
2418
+ value: 69.89445910290237
2419
+ - type: euclidean_accuracy
2420
+ value: 86.94641473445789
2421
+ - type: euclidean_ap
2422
+ value: 76.80774009393652
2423
+ - type: euclidean_f1
2424
+ value: 70.30522503879979
2425
+ - type: euclidean_precision
2426
+ value: 68.94977168949772
2427
+ - type: euclidean_recall
2428
+ value: 71.71503957783642
2429
+ - type: manhattan_accuracy
2430
+ value: 86.8629671574179
2431
+ - type: manhattan_ap
2432
+ value: 76.76518632600317
2433
+ - type: manhattan_f1
2434
+ value: 70.16056518946692
2435
+ - type: manhattan_precision
2436
+ value: 68.360450563204
2437
+ - type: manhattan_recall
2438
+ value: 72.0580474934037
2439
+ - type: max_accuracy
2440
+ value: 86.94641473445789
2441
+ - type: max_ap
2442
+ value: 76.91572747061197
2443
+ - type: max_f1
2444
+ value: 70.30522503879979
2445
+ - task:
2446
+ type: PairClassification
2447
+ dataset:
2448
+ name: MTEB TwitterURLCorpus
2449
+ type: mteb/twitterurlcorpus-pairclassification
2450
+ config: default
2451
+ split: test
2452
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2453
+ metrics:
2454
+ - type: cos_sim_accuracy
2455
+ value: 89.10428066907285
2456
+ - type: cos_sim_ap
2457
+ value: 86.25114759921435
2458
+ - type: cos_sim_f1
2459
+ value: 78.37857884586856
2460
+ - type: cos_sim_precision
2461
+ value: 75.60818546078993
2462
+ - type: cos_sim_recall
2463
+ value: 81.35971666153372
2464
+ - type: dot_accuracy
2465
+ value: 87.41995575736406
2466
+ - type: dot_ap
2467
+ value: 81.51838010086782
2468
+ - type: dot_f1
2469
+ value: 74.77398015435503
2470
+ - type: dot_precision
2471
+ value: 71.53002390662354
2472
+ - type: dot_recall
2473
+ value: 78.32614721281182
2474
+ - type: euclidean_accuracy
2475
+ value: 89.12368533395428
2476
+ - type: euclidean_ap
2477
+ value: 86.33456799874504
2478
+ - type: euclidean_f1
2479
+ value: 78.45496750232127
2480
+ - type: euclidean_precision
2481
+ value: 75.78388462366364
2482
+ - type: euclidean_recall
2483
+ value: 81.32121958731136
2484
+ - type: manhattan_accuracy
2485
+ value: 89.10622113556099
2486
+ - type: manhattan_ap
2487
+ value: 86.31215061745333
2488
+ - type: manhattan_f1
2489
+ value: 78.40684906011539
2490
+ - type: manhattan_precision
2491
+ value: 75.89536643366722
2492
+ - type: manhattan_recall
2493
+ value: 81.09023714197721
2494
+ - type: max_accuracy
2495
+ value: 89.12368533395428
2496
+ - type: max_ap
2497
+ value: 86.33456799874504
2498
+ - type: max_f1
2499
+ value: 78.45496750232127
2500
+ ---
2501
+
2502
+ # KeyurRamoliya/e5-large-v2-Q8_0-GGUF
2503
+ This model was converted to GGUF format from [`intfloat/e5-large-v2`](https://huggingface.co/intfloat/e5-large-v2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
2504
+ Refer to the [original model card](https://huggingface.co/intfloat/e5-large-v2) for more details on the model.
2505
+
2506
+ ## Use with llama.cpp
2507
+ Install llama.cpp through brew (works on Mac and Linux)
2508
+
2509
+ ```bash
2510
+ brew install llama.cpp
2511
+
2512
+ ```
2513
+ Invoke the llama.cpp server or the CLI.
2514
+
2515
+ ### CLI:
2516
+ ```bash
2517
+ llama-cli --hf-repo KeyurRamoliya/e5-large-v2-Q8_0-GGUF --hf-file e5-large-v2-q8_0.gguf -p "The meaning to life and the universe is"
2518
+ ```
2519
+
2520
+ ### Server:
2521
+ ```bash
2522
+ llama-server --hf-repo KeyurRamoliya/e5-large-v2-Q8_0-GGUF --hf-file e5-large-v2-q8_0.gguf -c 2048
2523
+ ```
2524
+
2525
+ Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
2526
+
2527
+ Step 1: Clone llama.cpp from GitHub.
2528
+ ```
2529
+ git clone https://github.com/ggerganov/llama.cpp
2530
+ ```
2531
+
2532
+ Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
2533
+ ```
2534
+ cd llama.cpp && LLAMA_CURL=1 make
2535
+ ```
2536
+
2537
+ Step 3: Run inference through the main binary.
2538
+ ```
2539
+ ./llama-cli --hf-repo KeyurRamoliya/e5-large-v2-Q8_0-GGUF --hf-file e5-large-v2-q8_0.gguf -p "The meaning to life and the universe is"
2540
+ ```
2541
+ or
2542
+ ```
2543
+ ./llama-server --hf-repo KeyurRamoliya/e5-large-v2-Q8_0-GGUF --hf-file e5-large-v2-q8_0.gguf -c 2048
2544
+ ```