File size: 2,837 Bytes
b04819f a7fd238 b04819f 9d06371 bd6ebd9 b04819f bd6ebd9 b04819f 6c31803 bd6ebd9 fc09d74 7128bc0 bd6ebd9 6c31803 bd6ebd9 b04819f fc09d74 b04819f a7fd238 b04819f fc09d74 b04819f fc09d74 b04819f 986dd8b ff0b266 6173ecc 7128bc0 cadfc5a b04819f 9d06371 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: cc-by-4.0
base_model: deepset/roberta-base-squad2
tags:
- generated_from_keras_callback
model-index:
- name: Kiran2004/Roberta_QCA_Squad
results: []
datasets:
- rajpurkar/squad
metrics:
- accuracy
- precision
- recall
- f1
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
## Model description
This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on an [squad](https://huggingface.co/datasets/rajpurkar/squad) dataset.It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering for 6 Epochs.
It achieves the following results after training:
- Train Loss: 0.1434
- Validation Loss: 0.4821
## Model Training
- **Training Dataset**: [squad](https://huggingface.co/datasets/rajpurkar/squad)
- **Pretrained Model**: [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2)
## Evaluation
The model's performance can be evaluated using various metrics such as Accuracy, Recall, Precision, F1 score.
- Accuracy: 0.9100
- Precision: 0.9099
- Recall: 0.9099
- F1 Score: 0.9603
## Example Usage
```python
from transformers import pipeline
model_name = "Kiran2004/Roberta_QCA_Squad"
question_answerer = pipeline("question-answering", model = model_name)
question = "How many programming languages does BLOOM support?"
context = "BLOOM has 176 billion parameters and can generate text in 46 languages natural languages and 13 programming languages."
question_answerer(question=question, context=context)
```
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 250, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 0.5774 | 0.4305 | 0 |
| 0.3089 | 0.4597 | 1 |
| 0.2268 | 0.4541 | 2 |
| 0.1852 | 0.4718 | 3 |
| 0.1618 | 0.4821 | 4 |
| 0.1434 | 0.4821 | 5 |
### Framework versions
- Transformers 4.38.2
- TensorFlow 2.15.0
- Datasets 2.18.0
- Tokenizers 0.15.2 |