File size: 2,837 Bytes
b04819f
 
 
 
 
 
a7fd238
b04819f
9d06371
 
bd6ebd9
 
 
 
 
b04819f
 
 
 
 
bd6ebd9
b04819f
6c31803
bd6ebd9
fc09d74
7128bc0
bd6ebd9
 
 
 
 
 
 
 
 
6c31803
 
 
 
bd6ebd9
 
b04819f
fc09d74
 
b04819f
a7fd238
b04819f
fc09d74
 
 
 
b04819f
fc09d74
 
b04819f
 
 
 
 
 
 
 
 
 
 
 
986dd8b
ff0b266
6173ecc
7128bc0
cadfc5a
b04819f
 
 
 
 
 
 
9d06371
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: cc-by-4.0
base_model: deepset/roberta-base-squad2
tags:
- generated_from_keras_callback
model-index:
- name: Kiran2004/Roberta_QCA_Squad
  results: []
datasets:
- rajpurkar/squad
metrics:
- accuracy
- precision
- recall
- f1
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

## Model description

This model is a fine-tuned version of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2) on an [squad](https://huggingface.co/datasets/rajpurkar/squad) dataset.It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering for 6 Epochs.
It achieves the following results after training:
- Train Loss: 0.1434
- Validation Loss: 0.4821

## Model Training

- **Training Dataset**: [squad](https://huggingface.co/datasets/rajpurkar/squad)
- **Pretrained Model**: [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2)

## Evaluation

The model's performance can be evaluated using various metrics such as Accuracy, Recall, Precision, F1 score.
- Accuracy: 0.9100
- Precision: 0.9099
- Recall: 0.9099
- F1 Score: 0.9603
  
## Example Usage

```python
from transformers import pipeline

model_name = "Kiran2004/Roberta_QCA_Squad"

question_answerer = pipeline("question-answering", model = model_name)

question = "How many programming languages does BLOOM support?"
context = "BLOOM has 176 billion parameters and can generate text in 46 languages natural languages and 13 programming languages."

question_answerer(question=question, context=context)
```

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 250, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 0.5774     | 0.4305          | 0     |
| 0.3089     | 0.4597          | 1     |
| 0.2268     | 0.4541          | 2     |
| 0.1852     | 0.4718          | 3     |
| 0.1618     | 0.4821          | 4     |
| 0.1434     | 0.4821          | 5     |


### Framework versions

- Transformers 4.38.2
- TensorFlow 2.15.0
- Datasets 2.18.0
- Tokenizers 0.15.2