--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - Italian --- # ItaLegalEmb_v2 🇮🇹 ItaLegalEmb_v2 is the second version of the ItaLegalEmb family embedding models. As his predecessor, it is a specialized embedding model specifically trained on a corpus of Italian legal documents. ItalegalEmb_v2 is based on **BAAI/bge-m3**, a SOTA embedding model with outstanding multilingual skills. Features: Dimensions: 1024 Sequence Lenght: 8192 **Please note :** any access request made using an organizational email address automatically grants us permission to list your organization as a user of our products and services on our website. If you do not agree with this policy, we ask that you refrain from requesting access to our materials. ## Evaluation Results In our evaluations on the specific domain, **ItaLegalEmb_v2** **scores** **93%**, while OpenAI stops at 79% and **ItaLegalEmb** at **85%**. As llama.cpp team has just released (early August 2024) a version which supports **XLMRoberta** embedding models (ItaLegalEmb_v2 belongs to this), a gguf Q8 version of the model is also included here 😉. This is a [sentence-transformers](https://www.SBERT.net) model: It can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 190 with parameters: ``` {'batch_size': 10, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 3, "evaluation_steps": 50, "evaluator": "sentence_transformers.evaluation.InformationRetrievalEvaluator.InformationRetrievalEvaluator", "max_grad_norm": 1, "optimizer_class": "", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 57, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) (2): Normalize() ) ``` ## Citing & Authors @misc{ItaLegalEmb, title = {Kleva-ai/ItaLegalEmb_v2: An embedding model fine-tuned on Italian legal documents.}, author = {Obiactum}, year = {2024}, publisher = {Kleva-ai}, journal = {HuggingFace repository}, howpublished = {\url{https://huggingface.co/Kleva-ai/ItaLegalEmb_v2}}, }