KoichiYasuoka commited on
Commit
8385fd2
·
1 Parent(s): 4dfc957

model improved for transformers 4.42

Browse files
config.json CHANGED
@@ -3,22 +3,11 @@
3
  "MistralForTokenClassification"
4
  ],
5
  "attention_dropout": 0.0,
6
- "auto_map": {
7
- "AutoModelForTokenClassification": "upos.MistralForTokenClassification"
8
- },
9
  "bos_token_id": 1,
10
  "custom_pipelines": {
11
  "upos": {
12
  "impl": "upos.BellmanFordTokenClassificationPipeline",
13
  "pt": "AutoModelForTokenClassification"
14
- },
15
- "token-classification": {
16
- "impl": "upos.RawTokenClassificationPipeline",
17
- "pt": "AutoModelForTokenClassification"
18
- },
19
- "ner": {
20
- "impl": "upos.RawTokenClassificationPipeline",
21
- "pt": "AutoModelForTokenClassification"
22
  }
23
  },
24
  "eos_token_id": 2,
@@ -161,7 +150,7 @@
161
  "tie_word_embeddings": false,
162
  "tokenizer_class": "LlamaTokenizerFast",
163
  "torch_dtype": "float32",
164
- "transformers_version": "4.41.2",
165
  "use_cache": true,
166
  "use_transformers_inputs": true,
167
  "vocab_size": 48000
 
3
  "MistralForTokenClassification"
4
  ],
5
  "attention_dropout": 0.0,
 
 
 
6
  "bos_token_id": 1,
7
  "custom_pipelines": {
8
  "upos": {
9
  "impl": "upos.BellmanFordTokenClassificationPipeline",
10
  "pt": "AutoModelForTokenClassification"
 
 
 
 
 
 
 
 
11
  }
12
  },
13
  "eos_token_id": 2,
 
150
  "tie_word_embeddings": false,
151
  "tokenizer_class": "LlamaTokenizerFast",
152
  "torch_dtype": "float32",
153
+ "transformers_version": "4.42.4",
154
  "use_cache": true,
155
  "use_transformers_inputs": true,
156
  "vocab_size": 48000
maker.sh CHANGED
@@ -30,45 +30,9 @@ cat << 'EOF' > $TMPB
30
  #! /usr/bin/env deepspeed
31
  src="exRakutenAI-7B"
32
  tgt="KoichiYasuoka/RakutenAI-7B-upos"
33
- from transformers import LlamaTokenizerFast,MistralModel,MistralPreTrainedModel,AutoConfig,DataCollatorForTokenClassification,TrainingArguments,Trainer
34
- from transformers.modeling_outputs import TokenClassifierOutput
35
  from tokenizers.normalizers import Replace
36
 
37
- class MistralForTokenClassification(MistralPreTrainedModel):
38
- def __init__(self,config):
39
- from torch import nn
40
- super().__init__(config)
41
- self.num_labels=config.num_labels
42
- self.model=MistralModel(config)
43
- if hasattr(config,"classifier_dropout") and config.classifier_dropout is not None:
44
- classifier_dropout=config.classifier_dropout
45
- elif hasattr(config,"hidden_dropout") and config.hidden_dropout is not None:
46
- classifier_dropout=config.hidden_dropout
47
- else:
48
- classifier_dropout=0.1
49
- self.dropout=nn.Dropout(classifier_dropout)
50
- self.classifier=nn.Linear(config.hidden_size,config.num_labels)
51
- self.post_init()
52
- def get_input_embeddings(self):
53
- return self.model.embed_tokens
54
- def set_input_embeddings(self,value):
55
- self.model.embed_tokens=value
56
- def forward(self,input_ids=None,past_key_values=None,attention_mask=None,position_ids=None,inputs_embeds=None,labels=None,use_cache=None,output_attentions=None,output_hidden_states=None,return_dict=None):
57
- return_dict=return_dict if return_dict is not None else self.config.use_return_dict
58
- transformer_outputs=self.model(input_ids,past_key_values=past_key_values,attention_mask=attention_mask,position_ids=position_ids,inputs_embeds=inputs_embeds,use_cache=use_cache,output_attentions=output_attentions,output_hidden_states=output_hidden_states,return_dict=return_dict)
59
- hidden_states=transformer_outputs[0]
60
- hidden_states=self.dropout(hidden_states)
61
- logits=self.classifier(hidden_states)
62
- loss=None
63
- if labels is not None:
64
- from torch import nn
65
- loss_fct=nn.CrossEntropyLoss()
66
- loss=loss_fct(logits.view(-1,self.num_labels),labels.view(-1))
67
- if not return_dict:
68
- output=(logits,)+transformer_outputs[2:]
69
- return ((loss,)+output) if loss is not None else output
70
- return TokenClassifierOutput(loss=loss,logits=logits,hidden_states=transformer_outputs.hidden_states,attentions=transformer_outputs.attentions)
71
-
72
  class UPOSFileDataset(object):
73
  def __init__(self,conllu,tokenizer):
74
  self.conllu=open(conllu,"r",encoding="utf-8")
 
30
  #! /usr/bin/env deepspeed
31
  src="exRakutenAI-7B"
32
  tgt="KoichiYasuoka/RakutenAI-7B-upos"
33
+ from transformers import LlamaTokenizerFast,MistralForTokenClassification,AutoConfig,DataCollatorForTokenClassification,TrainingArguments,Trainer
 
34
  from tokenizers.normalizers import Replace
35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
  class UPOSFileDataset(object):
37
  def __init__(self,conllu,tokenizer):
38
  self.conllu=open(conllu,"r",encoding="utf-8")
pytorch_model-00001-of-00006.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:858d8cc9eeaa938da0a309452684555abe89c0d86f3d0e4a2ae0524b42443638
3
  size 4913773120
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4964869128383677fa5606d0a4ed8d1671e017f9fcee8d5bb76c86698bd0bec7
3
  size 4913773120
pytorch_model-00002-of-00006.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:07b63ce35674bfcd0be1e29f48811c91b01f6cb0bb168fa7cab687d2aa12929e
3
  size 4999825256
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:987a14b03e439ece74b9c28d2334fc5a9a84e8ad17e6e6f1c81ad09c70d7fbb0
3
  size 4999825256
pytorch_model-00003-of-00006.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:016e54d9957c39ddc44acc336b627bbb29932838f02ff33b2aae3c6c66c0a4df
3
  size 4999825316
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff7f12de394e69c4ab16ee0aad77095085d75f3def0ecf8de9b521690a22c536
3
  size 4999825316
pytorch_model-00004-of-00006.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a0361b986edbe8c04dc733ba3c280d751eda8614958b549ec1f635cb78e63075
3
  size 4832018324
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aef0b1302652d535cf187d1c5a833e1508671b7487f2f19001b7cfa8ec778454
3
  size 4832018324
pytorch_model-00005-of-00006.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a8f1369c379a88759857a71127fc1c08edecf90cc9a21e36e75cd4d2be39b51b
3
  size 4999825320
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9657d37d2e4f7c275f3960d5d31ef541223074220ffe5af727b7eed35685da40
3
  size 4999825320
pytorch_model-00006-of-00006.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8baff249d8aff616fa93640f936e5bc9723f68b4730b415313dd8f7131fdd716
3
  size 3960601264
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:333bc2435071a127df8259f18bfeef267f86423bcef9e9380dbe70750c85a49f
3
  size 3960601264
pytorch_model.bin.index.json CHANGED
@@ -3,8 +3,6 @@
3
  "total_size": 28705767664
4
  },
5
  "weight_map": {
6
- "classifier.bias": "pytorch_model-00006-of-00006.bin",
7
- "classifier.weight": "pytorch_model-00006-of-00006.bin",
8
  "model.embed_tokens.weight": "pytorch_model-00001-of-00006.bin",
9
  "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
10
  "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
@@ -294,6 +292,8 @@
294
  "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
295
  "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
296
  "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
297
- "model.norm.weight": "pytorch_model-00006-of-00006.bin"
 
 
298
  }
299
  }
 
3
  "total_size": 28705767664
4
  },
5
  "weight_map": {
 
 
6
  "model.embed_tokens.weight": "pytorch_model-00001-of-00006.bin",
7
  "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
8
  "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
 
292
  "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
293
  "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
294
  "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
295
+ "model.norm.weight": "pytorch_model-00006-of-00006.bin",
296
+ "score.bias": "pytorch_model-00006-of-00006.bin",
297
+ "score.weight": "pytorch_model-00006-of-00006.bin"
298
  }
299
  }
tokenizer_config.json CHANGED
@@ -1,6 +1,7 @@
1
  {
2
  "add_bos_token": true,
3
  "add_eos_token": false,
 
4
  "added_tokens_decoder": {
5
  "0": {
6
  "content": "<unk>",
 
1
  {
2
  "add_bos_token": true,
3
  "add_eos_token": false,
4
+ "add_prefix_space": null,
5
  "added_tokens_decoder": {
6
  "0": {
7
  "content": "<unk>",
upos.py CHANGED
@@ -1,5 +1,4 @@
1
- from transformers import TokenClassificationPipeline,MistralModel,MistralPreTrainedModel
2
- from transformers.modeling_outputs import TokenClassifierOutput
3
 
4
  class BellmanFordTokenClassificationPipeline(TokenClassificationPipeline):
5
  def __init__(self,**kwargs):
@@ -40,41 +39,3 @@ class BellmanFordTokenClassificationPipeline(TokenClassificationPipeline):
40
  t["text"]=model_outputs["sentence"][t["start"]:t["end"]]
41
  return w
42
 
43
- class RawTokenClassificationPipeline(TokenClassificationPipeline):
44
- def check_model_type(self,supported_models):
45
- pass
46
-
47
- class MistralForTokenClassification(MistralPreTrainedModel):
48
- def __init__(self,config):
49
- from torch import nn
50
- super().__init__(config)
51
- self.num_labels=config.num_labels
52
- self.model=MistralModel(config)
53
- if hasattr(config,"classifier_dropout") and config.classifier_dropout is not None:
54
- classifier_dropout=config.classifier_dropout
55
- elif hasattr(config,"hidden_dropout") and config.hidden_dropout is not None:
56
- classifier_dropout=config.hidden_dropout
57
- else:
58
- classifier_dropout=0.1
59
- self.dropout=nn.Dropout(classifier_dropout)
60
- self.classifier=nn.Linear(config.hidden_size,config.num_labels)
61
- self.post_init()
62
- def get_input_embeddings(self):
63
- return self.model.embed_tokens
64
- def set_input_embeddings(self,value):
65
- self.model.embed_tokens=value
66
- def forward(self,input_ids=None,past_key_values=None,attention_mask=None,position_ids=None,inputs_embeds=None,labels=None,use_cache=None,output_attentions=None,output_hidden_states=None,return_dict=None):
67
- return_dict=return_dict if return_dict is not None else self.config.use_return_dict
68
- transformer_outputs=self.model(input_ids,past_key_values=past_key_values,attention_mask=attention_mask,position_ids=position_ids,inputs_embeds=inputs_embeds,use_cache=use_cache,output_attentions=output_attentions,output_hidden_states=output_hidden_states,return_dict=return_dict)
69
- hidden_states=transformer_outputs[0]
70
- hidden_states=self.dropout(hidden_states)
71
- logits=self.classifier(hidden_states)
72
- loss=None
73
- if labels is not None:
74
- from torch import nn
75
- loss_fct=nn.CrossEntropyLoss()
76
- loss=loss_fct(logits.view(-1,self.num_labels),labels.view(-1))
77
- if not return_dict:
78
- output=(logits,)+transformer_outputs[2:]
79
- return ((loss,)+output) if loss is not None else output
80
- return TokenClassifierOutput(loss=loss,logits=logits,hidden_states=transformer_outputs.hidden_states,attentions=transformer_outputs.attentions)
 
1
+ from transformers import TokenClassificationPipeline
 
2
 
3
  class BellmanFordTokenClassificationPipeline(TokenClassificationPipeline):
4
  def __init__(self,**kwargs):
 
39
  t["text"]=model_outputs["sentence"][t["start"]:t["end"]]
40
  return w
41