#! /bin/sh test -f ja_gsd_modern.conllu || curl -LO https://github.com/KoichiYasuoka/SuPar-UniDic/raw/main/suparunidic/suparmodels/ja_gsd_modern.conllu test -f JapaneseCoreKanji.txt || curl -LO https://www.unicode.org/wg2/iso10646/edition6/data/JapaneseCoreKanji.txt if [ ! -d exSwallow-7b-plus-hf ] then TMPA=./maker$$a.py cat << 'EOF' > $TMPA #! /usr/bin/python3 src="tokyotech-llm/Swallow-7b-plus-hf" tgt="exSwallow-7b-plus-hf" import json,torch,unicodedata from transformers import LlamaTokenizerFast,LlamaForCausalLM with open("JapaneseCoreKanji.txt","r",encoding="utf-8") as r: cjk=[chr(int(t,16)) for t in r.read().strip().split("\n") if not t.startswith("#")] with open("ja_gsd_modern.conllu","r",encoding="utf-8") as r: for s in r: t=s.split("\t") if len(t)==10: for c in t[1]: if unicodedata.name(c).startswith("CJK "): cjk.append(c) cjk=list(set(cjk)) tkz=LlamaTokenizerFast.from_pretrained(src,cls_token="",sep_token="",mask_token="",pad_token="",add_prefix_space=False) c={i:j[2:] for i,j in zip(cjk,tkz(cjk)["input_ids"]) if len(j)>3} d=json.loads(tkz.backend_tokenizer.to_str()) for i,j in enumerate(c,len(tkz)): d["model"]["vocab"][j]=i tkz.backend_tokenizer.from_str(json.dumps(d)).save("tokenizer.json") mdl=LlamaForCausalLM.from_pretrained(src) tkz=LlamaTokenizerFast(tokenizer_file="tokenizer.json",model_max_length=mdl.config.max_position_embeddings,cls_token="",sep_token="",mask_token="",pad_token="") e=mdl.resize_token_embeddings(len(tkz)) f=mdl.get_output_embeddings() with torch.no_grad(): for k,v in c.items(): e.weight[d["model"]["vocab"][k],:]=e.weight[v,:].sum(0) f.weight[d["model"]["vocab"][k],:]=f.weight[v,:].sum(0) mdl.set_input_embeddings(e) mdl.set_output_embeddings(f) mdl.save_pretrained(tgt) tkz.save_pretrained(tgt) EOF chmod 755 $TMPA $TMPA fi TMPB=./maker$$b.py cat << 'EOF' > $TMPB #! /usr/bin/env deepspeed src="exSwallow-7b-plus-hf" tgt="KoichiYasuoka/Swallow-7b-plus-upos" from transformers import LlamaTokenizerFast,LlamaForTokenClassification,AutoConfig,DataCollatorForTokenClassification,TrainingArguments,Trainer class UPOSFileDataset(object): def __init__(self,conllu,tokenizer): self.conllu=open(conllu,"r",encoding="utf-8") self.tokenizer=tokenizer self.seeks=[0] self.multiword={} label=set(["SYM"]) s=self.conllu.readline() while s!="": if s=="\n": self.seeks.append(self.conllu.tell()) else: w=s.split("\t") if len(w)==10: if w[0].isdecimal(): label.add(w[3] if w[5]=="_" else w[3]+"|"+w[5]) elif w[0].find("-")>0: t=w[0].split("-") f,j,k=w[1],[],[] for i in range(int(t[0]),int(t[1])+1): w=self.conllu.readline().split("\t") j.append(w[3] if w[5]=="_" else w[3]+"|"+w[5]) k.append(w[1]) p="+".join(j) label.add(p) if p in self.multiword: self.multiword[p][f]=list(k) else: self.multiword[p]={f:list(k)} s=self.conllu.readline() lid={} for i,l in enumerate(sorted(label)): lid[l],lid["B-"+l],lid["I-"+l]=i*3,i*3+1,i*3+2 self.label2id=lid def __call__(*args): lid={l:i for i,l in enumerate(sorted(set(sum([list(t.label2id) for t in args],[]))))} for t in args: t.label2id=lid return lid def __del__(self): self.conllu.close() __len__=lambda self:len(self.seeks)-1 def __getitem__(self,i): self.conllu.seek(self.seeks[i]) form,upos=[],[] while self.conllu.tell()0: t=w[0].split("-") u=[] for j in range(int(t[0]),int(t[1])+1): k=self.conllu.readline().split("\t") u.append(k[3] if k[5]=="_" else k[3]+"|"+k[5]) upos.append("+".join(u)) v=self.tokenizer(form,add_special_tokens=False) i,u=[],[] for j,(x,y) in enumerate(zip(v["input_ids"],upos)): if x!=[]: i+=x u+=[y] if len(x)==1 else ["B-"+y]+["I-"+y]*(len(x)-1) if len(i)