--- language: - "be" - "bg" - "ru" - "sr" - "uk" tags: - "belarusian" - "bulgarian" - "russian" - "serbian" - "ukrainian" - "token-classification" - "pos" - "dependency-parsing" datasets: - "universal_dependencies" license: "cc-by-sa-4.0" pipeline_tag: "token-classification" --- # bert-large-slavic-cyrillic-upos ## Model Description This is a BERT model pre-trained with Slavic-Cyrillic ([UD_Belarusian](https://universaldependencies.org/be/) [UD_Bulgarian](https://universaldependencies.org/bg/) [UD_Russian](https://universaldependencies.org/ru/) [UD_Serbian](https://universaldependencies.org/treebanks/sr_set/) [UD_Ukrainian](https://universaldependencies.org/treebanks/uk_iu/)) for POS-tagging and dependency-parsing, derived from [ruBert-large](https://huggingface.co/sberbank-ai/ruBert-large). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/bert-large-slavic-cyrillic-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/bert-large-slavic-cyrillic-upos") ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/bert-large-slavic-cyrillic-upos") ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa models