KoichiYasuoka
commited on
Commit
·
f90c577
1
Parent(s):
dddec5b
initial release
Browse files- README.md +58 -0
- config.json +211 -0
- maker.py +54 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +9 -0
- spm.model +3 -0
- tokenizer.json +0 -0
- tokenizer_config.json +14 -0
README.md
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- "ja"
|
4 |
+
tags:
|
5 |
+
- "japanese"
|
6 |
+
- "wikipedia"
|
7 |
+
- "pos"
|
8 |
+
- "dependency-parsing"
|
9 |
+
datasets:
|
10 |
+
- "universal_dependencies"
|
11 |
+
license: "cc-by-sa-4.0"
|
12 |
+
pipeline_tag: "token-classification"
|
13 |
+
widget:
|
14 |
+
- text: "全学年にわたって小学校の国語の教科書に挿し絵が用いられている"
|
15 |
+
---
|
16 |
+
|
17 |
+
# deberta-base-japanese-wikipedia-ud-goeswith
|
18 |
+
|
19 |
+
## Model Description
|
20 |
+
|
21 |
+
This is a DeBERTa(V2) model pretrained on Japanese Wikipedia and 青空文庫 texts for POS-tagging and dependency-parsing (using `goeswith` for subword-relation), derived from [deberta-base-japanese-wikipedia](https://huggingface.co/KoichiYasuoka/deberta-base-japanese-wikipedia) and [UD_Japanese-GSDLUW](https://github.com/UniversalDependencies/UD_Japanese-GSDLUW).
|
22 |
+
|
23 |
+
## How to Use
|
24 |
+
|
25 |
+
```py
|
26 |
+
class UDgoeswith(object):
|
27 |
+
def __init__(self,bert):
|
28 |
+
from transformers import AutoTokenizer,AutoModelForTokenClassification
|
29 |
+
self.tokenizer=AutoTokenizer.from_pretrained(bert)
|
30 |
+
self.model=AutoModelForTokenClassification.from_pretrained(bert)
|
31 |
+
def __call__(self,text):
|
32 |
+
import numpy,torch,ufal.chu_liu_edmonds
|
33 |
+
w=self.tokenizer(text,return_offsets_mapping=True)
|
34 |
+
v=w["input_ids"]
|
35 |
+
n=len(v)-1
|
36 |
+
with torch.no_grad():
|
37 |
+
d=self.model(input_ids=torch.tensor([v[0:i]+[self.tokenizer.mask_token_id]+v[i+1:]+[v[i]] for i in range(1,n)]))
|
38 |
+
e=d.logits.numpy()[:,1:n,:]
|
39 |
+
e[:,:,0]=numpy.nan
|
40 |
+
m=numpy.full((n,n),numpy.nan)
|
41 |
+
m[1:,1:]=numpy.nanmax(e,axis=2).transpose()
|
42 |
+
p=numpy.zeros((n,n))
|
43 |
+
p[1:,1:]=numpy.nanargmax(e,axis=2).transpose()
|
44 |
+
for i in range(1,n):
|
45 |
+
m[i,0],m[i,i],p[i,0]=m[i,i],numpy.nan,p[i,i]
|
46 |
+
h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0]
|
47 |
+
u="# text = "+text+"\n"
|
48 |
+
v=[(s,e) for s,e in w["offset_mapping"] if s<e]
|
49 |
+
for i,(s,e) in enumerate(v,1):
|
50 |
+
q=self.model.config.id2label[p[i,h[i]]].split("|")
|
51 |
+
u+="\t".join([str(i),text[s:e],"_",q[0],"_","|".join(q[1:-1]),str(h[i]),q[-1],"_","_" if i<len(v) and e<v[i][0] else "SpaceAfter=No"])+"\n"
|
52 |
+
return u+"\n"
|
53 |
+
|
54 |
+
nlp=UDgoeswith("KoichiYasuoka/deberta-base-japanese-wikipedia-ud-goeswith")
|
55 |
+
print(nlp("全学年にわたって小学校の国語の教科書に挿し絵が用いられている"))
|
56 |
+
```
|
57 |
+
|
58 |
+
[ufal.chu-liu-edmonds](https://pypi.org/project/ufal.chu-liu-edmonds/) is required.
|
config.json
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"DebertaV2ForTokenClassification"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 768,
|
11 |
+
"id2label": {
|
12 |
+
"0": "-|_|dep",
|
13 |
+
"1": "ADJ|_|acl",
|
14 |
+
"2": "ADJ|_|advcl",
|
15 |
+
"3": "ADJ|_|amod",
|
16 |
+
"4": "ADJ|_|ccomp",
|
17 |
+
"5": "ADJ|_|csubj",
|
18 |
+
"6": "ADJ|_|dep",
|
19 |
+
"7": "ADJ|_|dislocated",
|
20 |
+
"8": "ADJ|_|nmod",
|
21 |
+
"9": "ADJ|_|nsubj",
|
22 |
+
"10": "ADJ|_|obj",
|
23 |
+
"11": "ADJ|_|obl",
|
24 |
+
"12": "ADJ|_|root",
|
25 |
+
"13": "ADP|_|case",
|
26 |
+
"14": "ADP|_|fixed",
|
27 |
+
"15": "ADV|_|advcl",
|
28 |
+
"16": "ADV|_|advmod",
|
29 |
+
"17": "ADV|_|dep",
|
30 |
+
"18": "ADV|_|obj",
|
31 |
+
"19": "ADV|_|root",
|
32 |
+
"20": "AUX|Polarity=Neg|aux",
|
33 |
+
"21": "AUX|_|aux",
|
34 |
+
"22": "AUX|_|cop",
|
35 |
+
"23": "AUX|_|fixed",
|
36 |
+
"24": "AUX|_|root",
|
37 |
+
"25": "CCONJ|_|cc",
|
38 |
+
"26": "DET|_|det",
|
39 |
+
"27": "INTJ|_|discourse",
|
40 |
+
"28": "INTJ|_|root",
|
41 |
+
"29": "NOUN|Polarity=Neg|obl",
|
42 |
+
"30": "NOUN|Polarity=Neg|root",
|
43 |
+
"31": "NOUN|_|acl",
|
44 |
+
"32": "NOUN|_|advcl",
|
45 |
+
"33": "NOUN|_|ccomp",
|
46 |
+
"34": "NOUN|_|compound",
|
47 |
+
"35": "NOUN|_|csubj",
|
48 |
+
"36": "NOUN|_|dislocated",
|
49 |
+
"37": "NOUN|_|nmod",
|
50 |
+
"38": "NOUN|_|nsubj",
|
51 |
+
"39": "NOUN|_|obj",
|
52 |
+
"40": "NOUN|_|obl",
|
53 |
+
"41": "NOUN|_|root",
|
54 |
+
"42": "NUM|_|advcl",
|
55 |
+
"43": "NUM|_|compound",
|
56 |
+
"44": "NUM|_|dislocated",
|
57 |
+
"45": "NUM|_|nmod",
|
58 |
+
"46": "NUM|_|nsubj",
|
59 |
+
"47": "NUM|_|nummod",
|
60 |
+
"48": "NUM|_|obj",
|
61 |
+
"49": "NUM|_|obl",
|
62 |
+
"50": "NUM|_|root",
|
63 |
+
"51": "PART|_|mark",
|
64 |
+
"52": "PRON|_|acl",
|
65 |
+
"53": "PRON|_|advcl",
|
66 |
+
"54": "PRON|_|dislocated",
|
67 |
+
"55": "PRON|_|nmod",
|
68 |
+
"56": "PRON|_|nsubj",
|
69 |
+
"57": "PRON|_|obj",
|
70 |
+
"58": "PRON|_|obl",
|
71 |
+
"59": "PRON|_|root",
|
72 |
+
"60": "PROPN|_|acl",
|
73 |
+
"61": "PROPN|_|advcl",
|
74 |
+
"62": "PROPN|_|compound",
|
75 |
+
"63": "PROPN|_|dislocated",
|
76 |
+
"64": "PROPN|_|nmod",
|
77 |
+
"65": "PROPN|_|nsubj",
|
78 |
+
"66": "PROPN|_|obj",
|
79 |
+
"67": "PROPN|_|obl",
|
80 |
+
"68": "PROPN|_|root",
|
81 |
+
"69": "PUNCT|_|punct",
|
82 |
+
"70": "SCONJ|_|mark",
|
83 |
+
"71": "SYM|_|compound",
|
84 |
+
"72": "SYM|_|dep",
|
85 |
+
"73": "SYM|_|nmod",
|
86 |
+
"74": "SYM|_|obl",
|
87 |
+
"75": "VERB|_|acl",
|
88 |
+
"76": "VERB|_|advcl",
|
89 |
+
"77": "VERB|_|ccomp",
|
90 |
+
"78": "VERB|_|compound",
|
91 |
+
"79": "VERB|_|csubj",
|
92 |
+
"80": "VERB|_|dislocated",
|
93 |
+
"81": "VERB|_|nmod",
|
94 |
+
"82": "VERB|_|obj",
|
95 |
+
"83": "VERB|_|obl",
|
96 |
+
"84": "VERB|_|root",
|
97 |
+
"85": "X|_|dep",
|
98 |
+
"86": "X|_|goeswith",
|
99 |
+
"87": "X|_|nmod"
|
100 |
+
},
|
101 |
+
"initializer_range": 0.02,
|
102 |
+
"intermediate_size": 3072,
|
103 |
+
"label2id": {
|
104 |
+
"-|_|dep": 0,
|
105 |
+
"ADJ|_|acl": 1,
|
106 |
+
"ADJ|_|advcl": 2,
|
107 |
+
"ADJ|_|amod": 3,
|
108 |
+
"ADJ|_|ccomp": 4,
|
109 |
+
"ADJ|_|csubj": 5,
|
110 |
+
"ADJ|_|dep": 6,
|
111 |
+
"ADJ|_|dislocated": 7,
|
112 |
+
"ADJ|_|nmod": 8,
|
113 |
+
"ADJ|_|nsubj": 9,
|
114 |
+
"ADJ|_|obj": 10,
|
115 |
+
"ADJ|_|obl": 11,
|
116 |
+
"ADJ|_|root": 12,
|
117 |
+
"ADP|_|case": 13,
|
118 |
+
"ADP|_|fixed": 14,
|
119 |
+
"ADV|_|advcl": 15,
|
120 |
+
"ADV|_|advmod": 16,
|
121 |
+
"ADV|_|dep": 17,
|
122 |
+
"ADV|_|obj": 18,
|
123 |
+
"ADV|_|root": 19,
|
124 |
+
"AUX|Polarity=Neg|aux": 20,
|
125 |
+
"AUX|_|aux": 21,
|
126 |
+
"AUX|_|cop": 22,
|
127 |
+
"AUX|_|fixed": 23,
|
128 |
+
"AUX|_|root": 24,
|
129 |
+
"CCONJ|_|cc": 25,
|
130 |
+
"DET|_|det": 26,
|
131 |
+
"INTJ|_|discourse": 27,
|
132 |
+
"INTJ|_|root": 28,
|
133 |
+
"NOUN|Polarity=Neg|obl": 29,
|
134 |
+
"NOUN|Polarity=Neg|root": 30,
|
135 |
+
"NOUN|_|acl": 31,
|
136 |
+
"NOUN|_|advcl": 32,
|
137 |
+
"NOUN|_|ccomp": 33,
|
138 |
+
"NOUN|_|compound": 34,
|
139 |
+
"NOUN|_|csubj": 35,
|
140 |
+
"NOUN|_|dislocated": 36,
|
141 |
+
"NOUN|_|nmod": 37,
|
142 |
+
"NOUN|_|nsubj": 38,
|
143 |
+
"NOUN|_|obj": 39,
|
144 |
+
"NOUN|_|obl": 40,
|
145 |
+
"NOUN|_|root": 41,
|
146 |
+
"NUM|_|advcl": 42,
|
147 |
+
"NUM|_|compound": 43,
|
148 |
+
"NUM|_|dislocated": 44,
|
149 |
+
"NUM|_|nmod": 45,
|
150 |
+
"NUM|_|nsubj": 46,
|
151 |
+
"NUM|_|nummod": 47,
|
152 |
+
"NUM|_|obj": 48,
|
153 |
+
"NUM|_|obl": 49,
|
154 |
+
"NUM|_|root": 50,
|
155 |
+
"PART|_|mark": 51,
|
156 |
+
"PRON|_|acl": 52,
|
157 |
+
"PRON|_|advcl": 53,
|
158 |
+
"PRON|_|dislocated": 54,
|
159 |
+
"PRON|_|nmod": 55,
|
160 |
+
"PRON|_|nsubj": 56,
|
161 |
+
"PRON|_|obj": 57,
|
162 |
+
"PRON|_|obl": 58,
|
163 |
+
"PRON|_|root": 59,
|
164 |
+
"PROPN|_|acl": 60,
|
165 |
+
"PROPN|_|advcl": 61,
|
166 |
+
"PROPN|_|compound": 62,
|
167 |
+
"PROPN|_|dislocated": 63,
|
168 |
+
"PROPN|_|nmod": 64,
|
169 |
+
"PROPN|_|nsubj": 65,
|
170 |
+
"PROPN|_|obj": 66,
|
171 |
+
"PROPN|_|obl": 67,
|
172 |
+
"PROPN|_|root": 68,
|
173 |
+
"PUNCT|_|punct": 69,
|
174 |
+
"SCONJ|_|mark": 70,
|
175 |
+
"SYM|_|compound": 71,
|
176 |
+
"SYM|_|dep": 72,
|
177 |
+
"SYM|_|nmod": 73,
|
178 |
+
"SYM|_|obl": 74,
|
179 |
+
"VERB|_|acl": 75,
|
180 |
+
"VERB|_|advcl": 76,
|
181 |
+
"VERB|_|ccomp": 77,
|
182 |
+
"VERB|_|compound": 78,
|
183 |
+
"VERB|_|csubj": 79,
|
184 |
+
"VERB|_|dislocated": 80,
|
185 |
+
"VERB|_|nmod": 81,
|
186 |
+
"VERB|_|obj": 82,
|
187 |
+
"VERB|_|obl": 83,
|
188 |
+
"VERB|_|root": 84,
|
189 |
+
"X|_|dep": 85,
|
190 |
+
"X|_|goeswith": 86,
|
191 |
+
"X|_|nmod": 87
|
192 |
+
},
|
193 |
+
"layer_norm_eps": 1e-07,
|
194 |
+
"max_position_embeddings": 512,
|
195 |
+
"max_relative_positions": -1,
|
196 |
+
"model_type": "deberta-v2",
|
197 |
+
"num_attention_heads": 12,
|
198 |
+
"num_hidden_layers": 12,
|
199 |
+
"pad_token_id": 1,
|
200 |
+
"pooler_dropout": 0,
|
201 |
+
"pooler_hidden_act": "gelu",
|
202 |
+
"pooler_hidden_size": 768,
|
203 |
+
"pos_att_type": null,
|
204 |
+
"position_biased_input": true,
|
205 |
+
"relative_attention": false,
|
206 |
+
"tokenizer_class": "DebertaV2TokenizerFast",
|
207 |
+
"torch_dtype": "float32",
|
208 |
+
"transformers_version": "4.22.0",
|
209 |
+
"type_vocab_size": 0,
|
210 |
+
"vocab_size": 32000
|
211 |
+
}
|
maker.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#! /usr/bin/python3
|
2 |
+
src="KoichiYasuoka/deberta-base-japanese-wikipedia"
|
3 |
+
tgt="KoichiYasuoka/deberta-base-japanese-wikipedia-ud-goeswith"
|
4 |
+
url="https://github.com/UniversalDependencies/UD_Japanese-GSDLUW"
|
5 |
+
import os
|
6 |
+
d=os.path.basename(url)
|
7 |
+
os.system("test -d "+d+" || git clone --depth=1 "+url)
|
8 |
+
os.system("for F in train dev test ; do cp "+d+"/*-$F.conllu $F.conllu ; done")
|
9 |
+
class UDgoeswithDataset(object):
|
10 |
+
def __init__(self,conllu,tokenizer):
|
11 |
+
self.ids,self.tags,label=[],[],set()
|
12 |
+
with open(conllu,"r",encoding="utf-8") as r:
|
13 |
+
cls,sep,msk=tokenizer.cls_token_id,tokenizer.sep_token_id,tokenizer.mask_token_id
|
14 |
+
dep,c="-|_|dep",[]
|
15 |
+
for s in r:
|
16 |
+
t=s.split("\t")
|
17 |
+
if len(t)==10 and t[0].isdecimal():
|
18 |
+
c.append(t)
|
19 |
+
elif c!=[]:
|
20 |
+
v=tokenizer([t[1] for t in c],add_special_tokens=False)["input_ids"]
|
21 |
+
for i in range(len(v)-1,-1,-1):
|
22 |
+
for j in range(1,len(v[i])):
|
23 |
+
c.insert(i+1,[c[i][0],"_","_","X","_","_",c[i][0],"goeswith","_","_"])
|
24 |
+
y=["0"]+[t[0] for t in c]
|
25 |
+
h=[y.index(t[6]) if t[6]!="0" else i+1 for i,t in enumerate(c)]
|
26 |
+
p,v=[t[3]+"|"+t[5]+"|"+t[7] for t in c],sum(v,[])
|
27 |
+
self.ids.append([cls]+v+[sep])
|
28 |
+
self.tags.append([dep]+p+[dep])
|
29 |
+
label=set(sum([self.tags[-1],list(label)],[]))
|
30 |
+
for i,k in enumerate(v):
|
31 |
+
self.ids.append([cls]+v[0:i]+[msk]+v[i+1:]+[sep,k])
|
32 |
+
self.tags.append([dep]+[t if h[j]==i+1 else dep for j,t in enumerate(p)]+[dep,dep])
|
33 |
+
c=[]
|
34 |
+
self.label2id={l:i for i,l in enumerate(sorted(label))}
|
35 |
+
def __call__(*args):
|
36 |
+
label=set(sum([list(t.label2id) for t in args],[]))
|
37 |
+
lid={l:i for i,l in enumerate(sorted(label))}
|
38 |
+
for t in args:
|
39 |
+
t.label2id=lid
|
40 |
+
return lid
|
41 |
+
__len__=lambda self:len(self.ids)
|
42 |
+
__getitem__=lambda self,i:{"input_ids":self.ids[i],"labels":[self.label2id[t] for t in self.tags[i]]}
|
43 |
+
from transformers import AutoTokenizer,AutoConfig,AutoModelForTokenClassification,DataCollatorForTokenClassification,TrainingArguments,Trainer
|
44 |
+
tkz=AutoTokenizer.from_pretrained(src)
|
45 |
+
trainDS=UDgoeswithDataset("train.conllu",tkz)
|
46 |
+
devDS=UDgoeswithDataset("dev.conllu",tkz)
|
47 |
+
testDS=UDgoeswithDataset("test.conllu",tkz)
|
48 |
+
lid=trainDS(devDS,testDS)
|
49 |
+
cfg=AutoConfig.from_pretrained(src,num_labels=len(lid),label2id=lid,id2label={i:l for l,i in lid.items()})
|
50 |
+
arg=TrainingArguments(num_train_epochs=3,per_device_train_batch_size=32,output_dir="/tmp",overwrite_output_dir=True,save_total_limit=2,evaluation_strategy="epoch",learning_rate=5e-05,warmup_ratio=0.1)
|
51 |
+
trn=Trainer(args=arg,data_collator=DataCollatorForTokenClassification(tkz),model=AutoModelForTokenClassification.from_pretrained(src,config=cfg),train_dataset=trainDS,eval_dataset=devDS)
|
52 |
+
trn.train()
|
53 |
+
trn.save_model(tgt)
|
54 |
+
tkz.save_pretrained(tgt)
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8620ab33667995641a2e314e11a714b600126542234de21969d7fa3e8765011e
|
3 |
+
size 440442611
|
special_tokens_map.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "[CLS]",
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"eos_token": "[SEP]",
|
5 |
+
"mask_token": "[MASK]",
|
6 |
+
"pad_token": "[PAD]",
|
7 |
+
"sep_token": "[SEP]",
|
8 |
+
"unk_token": "[UNK]"
|
9 |
+
}
|
spm.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:01ba4719c80b6fe911b091a7c05124b64eeece964e09c058ef8f9805daca546b
|
3 |
+
size 1
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "[CLS]",
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"do_lower_case": false,
|
5 |
+
"eos_token": "[SEP]",
|
6 |
+
"keep_accents": true,
|
7 |
+
"mask_token": "[MASK]",
|
8 |
+
"model_max_length": 512,
|
9 |
+
"pad_token": "[PAD]",
|
10 |
+
"sep_token": "[SEP]",
|
11 |
+
"split_by_punct": true,
|
12 |
+
"tokenizer_class": "DebertaV2TokenizerFast",
|
13 |
+
"unk_token": "[UNK]"
|
14 |
+
}
|