KoichiYasuoka commited on
Commit
c69ab63
Β·
1 Parent(s): 52dc966

initial release

Browse files
Files changed (1) hide show
  1. maker.py +53 -0
maker.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #! /usr/bin/python3
2
+ src="KoichiYasuoka/deberta-large-chinese-erlangshen-upos"
3
+ tgt="KoichiYasuoka/deberta-large-chinese-erlangshen-ud-goeswith"
4
+ import os
5
+ for d in ["UD_Chinese-GSD","UD_Chinese-GSDSimp"]:
6
+ os.system("test -d "+d+" || git clone --depth=1 https://github.com/UniversalDependencies/"+d)
7
+ os.system("for F in train dev test ; do cat UD_Chinese-*/*-$F.conllu > $F.conllu ; done")
8
+ class UDgoeswithDataset(object):
9
+ def __init__(self,conllu,tokenizer):
10
+ self.ids,self.tags,label=[],[],set()
11
+ with open(conllu,"r",encoding="utf-8") as r:
12
+ cls,sep,msk=tokenizer.cls_token_id,tokenizer.sep_token_id,tokenizer.mask_token_id
13
+ dep,c="-|_|dep",[]
14
+ for s in r:
15
+ t=s.split("\t")
16
+ if len(t)==10 and t[0].isdecimal():
17
+ c.append(t)
18
+ elif c!=[]:
19
+ v=tokenizer([t[1] for t in c],add_special_tokens=False)["input_ids"]
20
+ for i in range(len(v)-1,-1,-1):
21
+ for j in range(1,len(v[i])):
22
+ c.insert(i+1,[c[i][0],"_","_","X","_","_",c[i][0],"goeswith","_","_"])
23
+ y=["0"]+[t[0] for t in c]
24
+ h=[i if t[6]=="0" else y.index(t[6]) for i,t in enumerate(c,1)]
25
+ p,v=[t[3]+"|"+t[5]+"|"+t[7] for t in c],sum(v,[])
26
+ self.ids.append([cls]+v+[sep])
27
+ self.tags.append([dep]+p+[dep])
28
+ label=set(sum([self.tags[-1],list(label)],[]))
29
+ for i,k in enumerate(v):
30
+ self.ids.append([cls]+v[0:i]+[msk]+v[i+1:]+[sep,k])
31
+ self.tags.append([dep]+[t if h[j]==i+1 else dep for j,t in enumerate(p)]+[dep,dep])
32
+ c=[]
33
+ self.label2id={l:i for i,l in enumerate(sorted(label))}
34
+ def __call__(*args):
35
+ label=set(sum([list(t.label2id) for t in args],[]))
36
+ lid={l:i for i,l in enumerate(sorted(label))}
37
+ for t in args:
38
+ t.label2id=lid
39
+ return lid
40
+ __len__=lambda self:len(self.ids)
41
+ __getitem__=lambda self,i:{"input_ids":self.ids[i],"labels":[self.label2id[t] for t in self.tags[i]]}
42
+ from transformers import BertTokenizer,AutoConfig,AutoModelForTokenClassification,DataCollatorForTokenClassification,TrainingArguments,Trainer
43
+ tkz=BertTokenizer.from_pretrained(src,model_max_length=512)
44
+ trainDS=UDgoeswithDataset("train.conllu",tkz)
45
+ devDS=UDgoeswithDataset("dev.conllu",tkz)
46
+ testDS=UDgoeswithDataset("test.conllu",tkz)
47
+ lid=trainDS(devDS,testDS)
48
+ cfg=AutoConfig.from_pretrained(src,num_labels=len(lid),label2id=lid,id2label={i:l for l,i in lid.items()},ignore_mismatched_sizes=True)
49
+ arg=TrainingArguments(num_train_epochs=3,per_device_train_batch_size=8,output_dir="/tmp",overwrite_output_dir=True,save_total_limit=2,evaluation_strategy="epoch",learning_rate=5e-05,warmup_ratio=0.1)
50
+ trn=Trainer(args=arg,data_collator=DataCollatorForTokenClassification(tkz),model=AutoModelForTokenClassification.from_pretrained(src,config=cfg,ignore_mismatched_sizes=True),train_dataset=trainDS,eval_dataset=devDS)
51
+ trn.train()
52
+ trn.save_model(tgt)
53
+ tkz.save_pretrained(tgt)