KoichiYasuoka
commited on
Commit
•
a89586b
1
Parent(s):
e122350
initial release
Browse files- README.md +31 -0
- config.json +340 -0
- maker.py +51 -0
- mecab-jumandic-utf8.zip +3 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +9 -0
- spm.model +3 -0
- tokenizer.json +0 -0
- tokenizer_config.json +17 -0
- ud.py +110 -0
README.md
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- "ja"
|
4 |
+
tags:
|
5 |
+
- "japanese"
|
6 |
+
- "wikipedia"
|
7 |
+
- "cc100"
|
8 |
+
- "oscar"
|
9 |
+
- "pos"
|
10 |
+
- "dependency-parsing"
|
11 |
+
datasets:
|
12 |
+
- "universal_dependencies"
|
13 |
+
license: "cc-by-sa-4.0"
|
14 |
+
pipeline_tag: "token-classification"
|
15 |
+
---
|
16 |
+
|
17 |
+
# deberta-large-japanese-juman-ud-goeswith
|
18 |
+
|
19 |
+
## Model Description
|
20 |
+
|
21 |
+
This is a DeBERTa(V2) model pretrained on Japanese Wikipedia, CC-100, and OSCAR texts for POS-tagging and dependency-parsing (using `goeswith` for subwords), derived from [deberta-v2-large-japanese](https://huggingface.co/ku-nlp/deberta-v2-large-japanese).
|
22 |
+
|
23 |
+
## How to Use
|
24 |
+
|
25 |
+
```
|
26 |
+
from transformers import pipeline
|
27 |
+
nlp=pipeline("universal-dependencies","KoichiYasuoka/deberta-large-japanese-juman-ud-goeswith",trust_remote_code=True,aggregation_strategy="simple")
|
28 |
+
print(nlp("全学年にわたって小学校の国語の教科書に挿し絵が用いられている"))
|
29 |
+
```
|
30 |
+
|
31 |
+
[fugashi](https://pypi.org/project/fugashi) is required.
|
config.json
ADDED
@@ -0,0 +1,340 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"DebertaV2ForTokenClassification"
|
4 |
+
],
|
5 |
+
"attention_head_size": 64,
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"conv_act": "gelu",
|
8 |
+
"conv_kernel_size": 3,
|
9 |
+
"custom_pipelines": {
|
10 |
+
"universal-dependencies": {
|
11 |
+
"impl": "ud.UniversalDependenciesPipeline"
|
12 |
+
}
|
13 |
+
},
|
14 |
+
"hidden_act": "gelu",
|
15 |
+
"hidden_dropout_prob": 0.1,
|
16 |
+
"hidden_size": 1024,
|
17 |
+
"id2label": {
|
18 |
+
"0": "-|_|dep",
|
19 |
+
"1": "ADJ|Polarity=Neg|acl",
|
20 |
+
"2": "ADJ|Polarity=Neg|advcl",
|
21 |
+
"3": "ADJ|Polarity=Neg|ccomp",
|
22 |
+
"4": "ADJ|Polarity=Neg|root",
|
23 |
+
"5": "ADJ|_|acl",
|
24 |
+
"6": "ADJ|_|advcl",
|
25 |
+
"7": "ADJ|_|amod",
|
26 |
+
"8": "ADJ|_|ccomp",
|
27 |
+
"9": "ADJ|_|compound",
|
28 |
+
"10": "ADJ|_|csubj",
|
29 |
+
"11": "ADJ|_|dep",
|
30 |
+
"12": "ADJ|_|iobj",
|
31 |
+
"13": "ADJ|_|nmod",
|
32 |
+
"14": "ADJ|_|nsubj",
|
33 |
+
"15": "ADJ|_|obj",
|
34 |
+
"16": "ADJ|_|obl",
|
35 |
+
"17": "ADJ|_|parataxis",
|
36 |
+
"18": "ADJ|_|root",
|
37 |
+
"19": "ADP|_|case",
|
38 |
+
"20": "ADP|_|dislocated",
|
39 |
+
"21": "ADP|_|fixed",
|
40 |
+
"22": "ADP|_|mark",
|
41 |
+
"23": "ADP|_|root",
|
42 |
+
"24": "ADV|_|advcl",
|
43 |
+
"25": "ADV|_|advmod",
|
44 |
+
"26": "ADV|_|compound",
|
45 |
+
"27": "ADV|_|dislocated",
|
46 |
+
"28": "ADV|_|iobj",
|
47 |
+
"29": "ADV|_|nmod",
|
48 |
+
"30": "ADV|_|nsubj",
|
49 |
+
"31": "ADV|_|obj",
|
50 |
+
"32": "ADV|_|obl",
|
51 |
+
"33": "ADV|_|root",
|
52 |
+
"34": "AUX|Polarity=Neg|aux",
|
53 |
+
"35": "AUX|_|acl",
|
54 |
+
"36": "AUX|_|advcl",
|
55 |
+
"37": "AUX|_|aux",
|
56 |
+
"38": "AUX|_|ccomp",
|
57 |
+
"39": "AUX|_|conj",
|
58 |
+
"40": "AUX|_|cop",
|
59 |
+
"41": "AUX|_|fixed",
|
60 |
+
"42": "AUX|_|iobj",
|
61 |
+
"43": "AUX|_|obj",
|
62 |
+
"44": "AUX|_|obl",
|
63 |
+
"45": "AUX|_|root",
|
64 |
+
"46": "CCONJ|_|advmod",
|
65 |
+
"47": "CCONJ|_|case",
|
66 |
+
"48": "CCONJ|_|cc",
|
67 |
+
"49": "CCONJ|_|ccomp",
|
68 |
+
"50": "CCONJ|_|fixed",
|
69 |
+
"51": "CCONJ|_|mark",
|
70 |
+
"52": "DET|_|det",
|
71 |
+
"53": "DET|_|nsubj",
|
72 |
+
"54": "DET|_|obl",
|
73 |
+
"55": "DET|_|root",
|
74 |
+
"56": "INTJ|_|discourse",
|
75 |
+
"57": "INTJ|_|root",
|
76 |
+
"58": "NOUN|Polarity=Neg|compound",
|
77 |
+
"59": "NOUN|_|acl",
|
78 |
+
"60": "NOUN|_|advcl",
|
79 |
+
"61": "NOUN|_|advmod",
|
80 |
+
"62": "NOUN|_|appos",
|
81 |
+
"63": "NOUN|_|ccomp",
|
82 |
+
"64": "NOUN|_|compound",
|
83 |
+
"65": "NOUN|_|conj",
|
84 |
+
"66": "NOUN|_|csubj",
|
85 |
+
"67": "NOUN|_|dislocated",
|
86 |
+
"68": "NOUN|_|iobj",
|
87 |
+
"69": "NOUN|_|list",
|
88 |
+
"70": "NOUN|_|nmod",
|
89 |
+
"71": "NOUN|_|nsubj",
|
90 |
+
"72": "NOUN|_|obj",
|
91 |
+
"73": "NOUN|_|obl",
|
92 |
+
"74": "NOUN|_|parataxis",
|
93 |
+
"75": "NOUN|_|root",
|
94 |
+
"76": "NUM|_|advcl",
|
95 |
+
"77": "NUM|_|dislocated",
|
96 |
+
"78": "NUM|_|iobj",
|
97 |
+
"79": "NUM|_|nmod",
|
98 |
+
"80": "NUM|_|nsubj",
|
99 |
+
"81": "NUM|_|nummod",
|
100 |
+
"82": "NUM|_|obj",
|
101 |
+
"83": "NUM|_|obl",
|
102 |
+
"84": "NUM|_|root",
|
103 |
+
"85": "PART|_|acl",
|
104 |
+
"86": "PART|_|advcl",
|
105 |
+
"87": "PART|_|amod",
|
106 |
+
"88": "PART|_|case",
|
107 |
+
"89": "PART|_|conj",
|
108 |
+
"90": "PART|_|iobj",
|
109 |
+
"91": "PART|_|mark",
|
110 |
+
"92": "PART|_|nmod",
|
111 |
+
"93": "PART|_|nsubj",
|
112 |
+
"94": "PART|_|obj",
|
113 |
+
"95": "PART|_|obl",
|
114 |
+
"96": "PART|_|root",
|
115 |
+
"97": "PRON|_|acl",
|
116 |
+
"98": "PRON|_|advcl",
|
117 |
+
"99": "PRON|_|compound",
|
118 |
+
"100": "PRON|_|discourse",
|
119 |
+
"101": "PRON|_|dislocated",
|
120 |
+
"102": "PRON|_|iobj",
|
121 |
+
"103": "PRON|_|nmod",
|
122 |
+
"104": "PRON|_|nsubj",
|
123 |
+
"105": "PRON|_|obj",
|
124 |
+
"106": "PRON|_|obl",
|
125 |
+
"107": "PRON|_|root",
|
126 |
+
"108": "PROPN|_|acl",
|
127 |
+
"109": "PROPN|_|advcl",
|
128 |
+
"110": "PROPN|_|compound",
|
129 |
+
"111": "PROPN|_|dislocated",
|
130 |
+
"112": "PROPN|_|iobj",
|
131 |
+
"113": "PROPN|_|nmod",
|
132 |
+
"114": "PROPN|_|nsubj",
|
133 |
+
"115": "PROPN|_|obj",
|
134 |
+
"116": "PROPN|_|obl",
|
135 |
+
"117": "PROPN|_|root",
|
136 |
+
"118": "PROPN|_|vocative",
|
137 |
+
"119": "PUNCT|_|punct",
|
138 |
+
"120": "SCONJ|_|advcl",
|
139 |
+
"121": "SCONJ|_|fixed",
|
140 |
+
"122": "SCONJ|_|mark",
|
141 |
+
"123": "SYM|_|compound",
|
142 |
+
"124": "SYM|_|nmod",
|
143 |
+
"125": "SYM|_|nsubj",
|
144 |
+
"126": "SYM|_|obl",
|
145 |
+
"127": "SYM|_|punct",
|
146 |
+
"128": "VERB|_|acl",
|
147 |
+
"129": "VERB|_|advcl",
|
148 |
+
"130": "VERB|_|aux",
|
149 |
+
"131": "VERB|_|ccomp",
|
150 |
+
"132": "VERB|_|compound",
|
151 |
+
"133": "VERB|_|conj",
|
152 |
+
"134": "VERB|_|csubj",
|
153 |
+
"135": "VERB|_|dislocated",
|
154 |
+
"136": "VERB|_|fixed",
|
155 |
+
"137": "VERB|_|iobj",
|
156 |
+
"138": "VERB|_|nmod",
|
157 |
+
"139": "VERB|_|nsubj",
|
158 |
+
"140": "VERB|_|obj",
|
159 |
+
"141": "VERB|_|obl",
|
160 |
+
"142": "VERB|_|parataxis",
|
161 |
+
"143": "VERB|_|root",
|
162 |
+
"144": "X|_|dep",
|
163 |
+
"145": "X|_|goeswith",
|
164 |
+
"146": "X|_|nmod"
|
165 |
+
},
|
166 |
+
"initializer_range": 0.02,
|
167 |
+
"intermediate_size": 4096,
|
168 |
+
"label2id": {
|
169 |
+
"-|_|dep": 0,
|
170 |
+
"ADJ|Polarity=Neg|acl": 1,
|
171 |
+
"ADJ|Polarity=Neg|advcl": 2,
|
172 |
+
"ADJ|Polarity=Neg|ccomp": 3,
|
173 |
+
"ADJ|Polarity=Neg|root": 4,
|
174 |
+
"ADJ|_|acl": 5,
|
175 |
+
"ADJ|_|advcl": 6,
|
176 |
+
"ADJ|_|amod": 7,
|
177 |
+
"ADJ|_|ccomp": 8,
|
178 |
+
"ADJ|_|compound": 9,
|
179 |
+
"ADJ|_|csubj": 10,
|
180 |
+
"ADJ|_|dep": 11,
|
181 |
+
"ADJ|_|iobj": 12,
|
182 |
+
"ADJ|_|nmod": 13,
|
183 |
+
"ADJ|_|nsubj": 14,
|
184 |
+
"ADJ|_|obj": 15,
|
185 |
+
"ADJ|_|obl": 16,
|
186 |
+
"ADJ|_|parataxis": 17,
|
187 |
+
"ADJ|_|root": 18,
|
188 |
+
"ADP|_|case": 19,
|
189 |
+
"ADP|_|dislocated": 20,
|
190 |
+
"ADP|_|fixed": 21,
|
191 |
+
"ADP|_|mark": 22,
|
192 |
+
"ADP|_|root": 23,
|
193 |
+
"ADV|_|advcl": 24,
|
194 |
+
"ADV|_|advmod": 25,
|
195 |
+
"ADV|_|compound": 26,
|
196 |
+
"ADV|_|dislocated": 27,
|
197 |
+
"ADV|_|iobj": 28,
|
198 |
+
"ADV|_|nmod": 29,
|
199 |
+
"ADV|_|nsubj": 30,
|
200 |
+
"ADV|_|obj": 31,
|
201 |
+
"ADV|_|obl": 32,
|
202 |
+
"ADV|_|root": 33,
|
203 |
+
"AUX|Polarity=Neg|aux": 34,
|
204 |
+
"AUX|_|acl": 35,
|
205 |
+
"AUX|_|advcl": 36,
|
206 |
+
"AUX|_|aux": 37,
|
207 |
+
"AUX|_|ccomp": 38,
|
208 |
+
"AUX|_|conj": 39,
|
209 |
+
"AUX|_|cop": 40,
|
210 |
+
"AUX|_|fixed": 41,
|
211 |
+
"AUX|_|iobj": 42,
|
212 |
+
"AUX|_|obj": 43,
|
213 |
+
"AUX|_|obl": 44,
|
214 |
+
"AUX|_|root": 45,
|
215 |
+
"CCONJ|_|advmod": 46,
|
216 |
+
"CCONJ|_|case": 47,
|
217 |
+
"CCONJ|_|cc": 48,
|
218 |
+
"CCONJ|_|ccomp": 49,
|
219 |
+
"CCONJ|_|fixed": 50,
|
220 |
+
"CCONJ|_|mark": 51,
|
221 |
+
"DET|_|det": 52,
|
222 |
+
"DET|_|nsubj": 53,
|
223 |
+
"DET|_|obl": 54,
|
224 |
+
"DET|_|root": 55,
|
225 |
+
"INTJ|_|discourse": 56,
|
226 |
+
"INTJ|_|root": 57,
|
227 |
+
"NOUN|Polarity=Neg|compound": 58,
|
228 |
+
"NOUN|_|acl": 59,
|
229 |
+
"NOUN|_|advcl": 60,
|
230 |
+
"NOUN|_|advmod": 61,
|
231 |
+
"NOUN|_|appos": 62,
|
232 |
+
"NOUN|_|ccomp": 63,
|
233 |
+
"NOUN|_|compound": 64,
|
234 |
+
"NOUN|_|conj": 65,
|
235 |
+
"NOUN|_|csubj": 66,
|
236 |
+
"NOUN|_|dislocated": 67,
|
237 |
+
"NOUN|_|iobj": 68,
|
238 |
+
"NOUN|_|list": 69,
|
239 |
+
"NOUN|_|nmod": 70,
|
240 |
+
"NOUN|_|nsubj": 71,
|
241 |
+
"NOUN|_|obj": 72,
|
242 |
+
"NOUN|_|obl": 73,
|
243 |
+
"NOUN|_|parataxis": 74,
|
244 |
+
"NOUN|_|root": 75,
|
245 |
+
"NUM|_|advcl": 76,
|
246 |
+
"NUM|_|dislocated": 77,
|
247 |
+
"NUM|_|iobj": 78,
|
248 |
+
"NUM|_|nmod": 79,
|
249 |
+
"NUM|_|nsubj": 80,
|
250 |
+
"NUM|_|nummod": 81,
|
251 |
+
"NUM|_|obj": 82,
|
252 |
+
"NUM|_|obl": 83,
|
253 |
+
"NUM|_|root": 84,
|
254 |
+
"PART|_|acl": 85,
|
255 |
+
"PART|_|advcl": 86,
|
256 |
+
"PART|_|amod": 87,
|
257 |
+
"PART|_|case": 88,
|
258 |
+
"PART|_|conj": 89,
|
259 |
+
"PART|_|iobj": 90,
|
260 |
+
"PART|_|mark": 91,
|
261 |
+
"PART|_|nmod": 92,
|
262 |
+
"PART|_|nsubj": 93,
|
263 |
+
"PART|_|obj": 94,
|
264 |
+
"PART|_|obl": 95,
|
265 |
+
"PART|_|root": 96,
|
266 |
+
"PRON|_|acl": 97,
|
267 |
+
"PRON|_|advcl": 98,
|
268 |
+
"PRON|_|compound": 99,
|
269 |
+
"PRON|_|discourse": 100,
|
270 |
+
"PRON|_|dislocated": 101,
|
271 |
+
"PRON|_|iobj": 102,
|
272 |
+
"PRON|_|nmod": 103,
|
273 |
+
"PRON|_|nsubj": 104,
|
274 |
+
"PRON|_|obj": 105,
|
275 |
+
"PRON|_|obl": 106,
|
276 |
+
"PRON|_|root": 107,
|
277 |
+
"PROPN|_|acl": 108,
|
278 |
+
"PROPN|_|advcl": 109,
|
279 |
+
"PROPN|_|compound": 110,
|
280 |
+
"PROPN|_|dislocated": 111,
|
281 |
+
"PROPN|_|iobj": 112,
|
282 |
+
"PROPN|_|nmod": 113,
|
283 |
+
"PROPN|_|nsubj": 114,
|
284 |
+
"PROPN|_|obj": 115,
|
285 |
+
"PROPN|_|obl": 116,
|
286 |
+
"PROPN|_|root": 117,
|
287 |
+
"PROPN|_|vocative": 118,
|
288 |
+
"PUNCT|_|punct": 119,
|
289 |
+
"SCONJ|_|advcl": 120,
|
290 |
+
"SCONJ|_|fixed": 121,
|
291 |
+
"SCONJ|_|mark": 122,
|
292 |
+
"SYM|_|compound": 123,
|
293 |
+
"SYM|_|nmod": 124,
|
294 |
+
"SYM|_|nsubj": 125,
|
295 |
+
"SYM|_|obl": 126,
|
296 |
+
"SYM|_|punct": 127,
|
297 |
+
"VERB|_|acl": 128,
|
298 |
+
"VERB|_|advcl": 129,
|
299 |
+
"VERB|_|aux": 130,
|
300 |
+
"VERB|_|ccomp": 131,
|
301 |
+
"VERB|_|compound": 132,
|
302 |
+
"VERB|_|conj": 133,
|
303 |
+
"VERB|_|csubj": 134,
|
304 |
+
"VERB|_|dislocated": 135,
|
305 |
+
"VERB|_|fixed": 136,
|
306 |
+
"VERB|_|iobj": 137,
|
307 |
+
"VERB|_|nmod": 138,
|
308 |
+
"VERB|_|nsubj": 139,
|
309 |
+
"VERB|_|obj": 140,
|
310 |
+
"VERB|_|obl": 141,
|
311 |
+
"VERB|_|parataxis": 142,
|
312 |
+
"VERB|_|root": 143,
|
313 |
+
"X|_|dep": 144,
|
314 |
+
"X|_|goeswith": 145,
|
315 |
+
"X|_|nmod": 146
|
316 |
+
},
|
317 |
+
"layer_norm_eps": 1e-07,
|
318 |
+
"max_position_embeddings": 512,
|
319 |
+
"max_relative_positions": -1,
|
320 |
+
"model_type": "deberta-v2",
|
321 |
+
"norm_rel_ebd": "layer_norm",
|
322 |
+
"num_attention_heads": 16,
|
323 |
+
"num_hidden_layers": 24,
|
324 |
+
"pad_token_id": 0,
|
325 |
+
"pooler_dropout": 0,
|
326 |
+
"pooler_hidden_act": "gelu",
|
327 |
+
"pooler_hidden_size": 1024,
|
328 |
+
"pos_att_type": [
|
329 |
+
"p2c",
|
330 |
+
"c2p"
|
331 |
+
],
|
332 |
+
"position_biased_input": false,
|
333 |
+
"position_buckets": 256,
|
334 |
+
"relative_attention": true,
|
335 |
+
"share_att_key": true,
|
336 |
+
"torch_dtype": "float32",
|
337 |
+
"transformers_version": "4.26.0",
|
338 |
+
"type_vocab_size": 0,
|
339 |
+
"vocab_size": 32000
|
340 |
+
}
|
maker.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#! /usr/bin/python3
|
2 |
+
src="ku-nlp/deberta-v2-large-japanese"
|
3 |
+
tgt="KoichiYasuoka/deberta-large-japanese-juman-ud-goeswith"
|
4 |
+
url="https://github.com/KoichiYasuoka/SuPar-UniDic/raw/main/suparunidic/suparmodels/ja_gsd_modern.conllu"
|
5 |
+
import os
|
6 |
+
f=os.path.basename(url)
|
7 |
+
os.system("test -f "+f+" || curl -LO "+url)
|
8 |
+
class UDgoeswithDataset(object):
|
9 |
+
def __init__(self,conllu,tokenizer):
|
10 |
+
self.ids,self.tags,label=[],[],set()
|
11 |
+
with open(conllu,"r",encoding="utf-8") as r:
|
12 |
+
cls,sep,msk=tokenizer.cls_token_id,tokenizer.sep_token_id,tokenizer.mask_token_id
|
13 |
+
dep,c="-|_|dep",[]
|
14 |
+
for s in r:
|
15 |
+
t=s.split("\t")
|
16 |
+
if len(t)==10 and t[0].isdecimal():
|
17 |
+
c.append(t)
|
18 |
+
elif c!=[]:
|
19 |
+
v=tokenizer([t[1] for t in c],add_special_tokens=False)["input_ids"]
|
20 |
+
for i in range(len(v)-1,-1,-1):
|
21 |
+
for j in range(1,len(v[i])):
|
22 |
+
c.insert(i+1,[c[i][0],"_","_","X","_","_",c[i][0],"goeswith","_","_"])
|
23 |
+
y=["0"]+[t[0] for t in c]
|
24 |
+
h=[i if t[6]=="0" else y.index(t[6]) for i,t in enumerate(c,1)]
|
25 |
+
p,v=[t[3]+"|"+t[5]+"|"+t[7] for t in c],sum(v,[])
|
26 |
+
self.ids.append([cls]+v+[sep])
|
27 |
+
self.tags.append([dep]+p+[dep])
|
28 |
+
label=set(sum([self.tags[-1],list(label)],[]))
|
29 |
+
for i,k in enumerate(v):
|
30 |
+
self.ids.append([cls]+v[0:i]+[msk]+v[i+1:]+[sep,k])
|
31 |
+
self.tags.append([dep]+[t if h[j]==i+1 else dep for j,t in enumerate(p)]+[dep,dep])
|
32 |
+
c=[]
|
33 |
+
self.label2id={l:i for i,l in enumerate(sorted(label))}
|
34 |
+
def __call__(*args):
|
35 |
+
label=set(sum([list(t.label2id) for t in args],[]))
|
36 |
+
lid={l:i for i,l in enumerate(sorted(label))}
|
37 |
+
for t in args:
|
38 |
+
t.label2id=lid
|
39 |
+
return lid
|
40 |
+
__len__=lambda self:len(self.ids)
|
41 |
+
__getitem__=lambda self,i:{"input_ids":self.ids[i],"labels":[self.label2id[t] for t in self.tags[i]]}
|
42 |
+
from transformers import AutoTokenizer,AutoConfig,AutoModelForTokenClassification,DataCollatorForTokenClassification,TrainingArguments,Trainer
|
43 |
+
tkz=AutoTokenizer.from_pretrained(src)
|
44 |
+
trainDS=UDgoeswithDataset(f,tkz)
|
45 |
+
lid=trainDS.label2id
|
46 |
+
cfg=AutoConfig.from_pretrained(src,num_labels=len(lid),label2id=lid,id2label={i:l for l,i in lid.items()})
|
47 |
+
arg=TrainingArguments(num_train_epochs=3,per_device_train_batch_size=8,output_dir="/tmp",overwrite_output_dir=True,save_total_limit=2,learning_rate=5e-05,warmup_ratio=0.1)
|
48 |
+
trn=Trainer(args=arg,data_collator=DataCollatorForTokenClassification(tkz),model=AutoModelForTokenClassification.from_pretrained(src,config=cfg),train_dataset=trainDS)
|
49 |
+
trn.train()
|
50 |
+
trn.save_model(tgt)
|
51 |
+
tkz.save_pretrained(tgt)
|
mecab-jumandic-utf8.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bbde3e53407df0e50122816df8f936ceb006580c17026e21037518ed542e4cbc
|
3 |
+
size 33196897
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91e7f52b4038135bc683666a4d7c6c97336776e3a4619336189893ad084e2f52
|
3 |
+
size 1355759719
|
special_tokens_map.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "[CLS]",
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"eos_token": "[SEP]",
|
5 |
+
"mask_token": "[MASK]",
|
6 |
+
"pad_token": "[PAD]",
|
7 |
+
"sep_token": "[SEP]",
|
8 |
+
"unk_token": "[UNK]"
|
9 |
+
}
|
spm.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6c111c16e2e52366dcac46b886e40650bb843fe2938a65f5970271fc5697a127
|
3 |
+
size 805061
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {"AutoTokenizer":[null,"ud.JumanDebertaV2TokenizerFast"]},
|
3 |
+
"bos_token": "[CLS]",
|
4 |
+
"cls_token": "[CLS]",
|
5 |
+
"do_lower_case": false,
|
6 |
+
"eos_token": "[SEP]",
|
7 |
+
"keep_accents": true,
|
8 |
+
"mask_token": "[MASK]",
|
9 |
+
"model_max_length": 512,
|
10 |
+
"pad_token": "[PAD]",
|
11 |
+
"sep_token": "[SEP]",
|
12 |
+
"sp_model_kwargs": {},
|
13 |
+
"special_tokens_map_file": null,
|
14 |
+
"split_by_punct": false,
|
15 |
+
"tokenizer_class": "JumanDebertaV2TokenizerFast",
|
16 |
+
"unk_token": "[UNK]"
|
17 |
+
}
|
ud.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from transformers import TokenClassificationPipeline,DebertaV2TokenizerFast
|
3 |
+
from transformers.models.bert_japanese.tokenization_bert_japanese import MecabTokenizer
|
4 |
+
try:
|
5 |
+
from transformers.utils import cached_file
|
6 |
+
except:
|
7 |
+
from transformers.file_utils import cached_path,hf_bucket_url
|
8 |
+
cached_file=lambda x,y:os.path.join(x,y) if os.path.isdir(x) else cached_path(hf_bucket_url(x,y))
|
9 |
+
|
10 |
+
class UniversalDependenciesPipeline(TokenClassificationPipeline):
|
11 |
+
def _forward(self,model_inputs):
|
12 |
+
import torch
|
13 |
+
v=model_inputs["input_ids"][0].tolist()
|
14 |
+
with torch.no_grad():
|
15 |
+
e=self.model(input_ids=torch.tensor([v[0:i]+[self.tokenizer.mask_token_id]+v[i+1:]+[j] for i,j in enumerate(v[1:-1],1)],device=self.device))
|
16 |
+
return {"logits":e.logits[:,1:-2,:],**model_inputs}
|
17 |
+
def postprocess(self,model_outputs,**kwargs):
|
18 |
+
import numpy
|
19 |
+
e=model_outputs["logits"].numpy()
|
20 |
+
r=[1 if i==0 else -1 if j.endswith("|root") else 0 for i,j in sorted(self.model.config.id2label.items())]
|
21 |
+
e+=numpy.where(numpy.add.outer(numpy.identity(e.shape[0]),r)==0,0,numpy.nan)
|
22 |
+
g=self.model.config.label2id["X|_|goeswith"]
|
23 |
+
r=numpy.tri(e.shape[0])
|
24 |
+
for i in range(e.shape[0]):
|
25 |
+
for j in range(i+2,e.shape[1]):
|
26 |
+
r[i,j]=r[i,j-1] if numpy.nanargmax(e[i,j-1])==g else 1
|
27 |
+
e[:,:,g]+=numpy.where(r==0,0,numpy.nan)
|
28 |
+
m,p=numpy.nanmax(e,axis=2),numpy.nanargmax(e,axis=2)
|
29 |
+
h=self.chu_liu_edmonds(m)
|
30 |
+
z=[i for i,j in enumerate(h) if i==j]
|
31 |
+
if len(z)>1:
|
32 |
+
k,h=z[numpy.nanargmax(m[z,z])],numpy.nanmin(m)-numpy.nanmax(m)
|
33 |
+
m[:,z]+=[[0 if j in z and (i!=j or i==k) else h for i in z] for j in range(m.shape[0])]
|
34 |
+
h=self.chu_liu_edmonds(m)
|
35 |
+
v=[(s,e) for s,e in model_outputs["offset_mapping"][0].tolist() if s<e]
|
36 |
+
q=[self.model.config.id2label[p[j,i]].split("|") for i,j in enumerate(h)]
|
37 |
+
if "aggregation_strategy" in kwargs and kwargs["aggregation_strategy"]!="none":
|
38 |
+
for i,j in reversed(list(enumerate(q[1:],1))):
|
39 |
+
if j[-1]=="goeswith" and set([t[-1] for t in q[h[i]+1:i+1]])=={"goeswith"}:
|
40 |
+
h=[b if i>b else b-1 for a,b in enumerate(h) if i!=a]
|
41 |
+
v[i-1]=(v[i-1][0],v.pop(i)[1])
|
42 |
+
q.pop(i)
|
43 |
+
t=model_outputs["sentence"].replace("\n"," ")
|
44 |
+
u="# text = "+t+"\n"
|
45 |
+
for i,(s,e) in enumerate(v):
|
46 |
+
u+="\t".join([str(i+1),t[s:e],"_",q[i][0],"_","|".join(q[i][1:-1]),str(0 if h[i]==i else h[i]+1),q[i][-1],"_","_" if i+1<len(v) and e<v[i+1][0] else "SpaceAfter=No"])+"\n"
|
47 |
+
return u+"\n"
|
48 |
+
def chu_liu_edmonds(self,matrix):
|
49 |
+
import numpy
|
50 |
+
h=numpy.nanargmax(matrix,axis=0)
|
51 |
+
x=[-1 if i==j else j for i,j in enumerate(h)]
|
52 |
+
for b in [lambda x,i,j:-1 if i not in x else x[i],lambda x,i,j:-1 if j<0 else x[j]]:
|
53 |
+
y=[]
|
54 |
+
while x!=y:
|
55 |
+
y=list(x)
|
56 |
+
for i,j in enumerate(x):
|
57 |
+
x[i]=b(x,i,j)
|
58 |
+
if max(x)<0:
|
59 |
+
return h
|
60 |
+
y,x=[i for i,j in enumerate(x) if j==max(x)],[i for i,j in enumerate(x) if j<max(x)]
|
61 |
+
z=matrix-numpy.nanmax(matrix,axis=0)
|
62 |
+
m=numpy.block([[z[x,:][:,x],numpy.nanmax(z[x,:][:,y],axis=1).reshape(len(x),1)],[numpy.nanmax(z[y,:][:,x],axis=0),numpy.nanmax(z[y,y])]])
|
63 |
+
k=[j if i==len(x) else x[j] if j<len(x) else y[numpy.nanargmax(z[y,x[i]])] for i,j in enumerate(self.chu_liu_edmonds(m))]
|
64 |
+
h=[j if i in y else k[x.index(i)] for i,j in enumerate(h)]
|
65 |
+
i=y[numpy.nanargmax(z[x[k[-1]],y] if k[-1]<len(x) else z[y,y])]
|
66 |
+
h[i]=x[k[-1]] if k[-1]<len(x) else i
|
67 |
+
return h
|
68 |
+
|
69 |
+
class MecabPreTokenizer(MecabTokenizer):
|
70 |
+
def mecab_split(self,i,normalized_string):
|
71 |
+
t=str(normalized_string)
|
72 |
+
z=[]
|
73 |
+
e=0
|
74 |
+
for c in self.tokenize(t):
|
75 |
+
s=t.find(c,e)
|
76 |
+
if s<0:
|
77 |
+
z.append((0,0))
|
78 |
+
else:
|
79 |
+
e=s+len(c)
|
80 |
+
z.append((s,e))
|
81 |
+
return [normalized_string[s:e] for s,e in z]
|
82 |
+
def pre_tokenize(self,pretok):
|
83 |
+
pretok.split(self.mecab_split)
|
84 |
+
|
85 |
+
class JumanDebertaV2TokenizerFast(DebertaV2TokenizerFast):
|
86 |
+
def __init__(self,**kwargs):
|
87 |
+
from tokenizers.pre_tokenizers import PreTokenizer,Metaspace,Sequence
|
88 |
+
super().__init__(**kwargs)
|
89 |
+
d,r="/var/lib/mecab/dic/juman-utf8","/etc/mecabrc"
|
90 |
+
if not (os.path.isdir(d) and os.path.isfile(r)):
|
91 |
+
import zipfile
|
92 |
+
import tempfile
|
93 |
+
self.dicdir=tempfile.TemporaryDirectory()
|
94 |
+
d=self.dicdir.name
|
95 |
+
with zipfile.ZipFile(cached_file(self.name_or_path,"mecab-jumandic-utf8.zip")) as z:
|
96 |
+
z.extractall(d)
|
97 |
+
r=os.path.join(d,"mecabrc")
|
98 |
+
with open(r,"w",encoding="utf-8") as w:
|
99 |
+
print("dicdir =",d,file=w)
|
100 |
+
self.custom_pre_tokenizer=Sequence([PreTokenizer.custom(MecabPreTokenizer(mecab_dic=None,mecab_option="-d "+d+" -r "+r)),Metaspace()])
|
101 |
+
self._tokenizer.pre_tokenizer=self.custom_pre_tokenizer
|
102 |
+
def save_pretrained(self,save_directory,**kwargs):
|
103 |
+
import shutil
|
104 |
+
from tokenizers.pre_tokenizers import Metaspace
|
105 |
+
self._auto_map={"AutoTokenizer":[None,"ud.JumanDebertaV2TokenizerFast"]}
|
106 |
+
self._tokenizer.pre_tokenizer=Metaspace()
|
107 |
+
super().save_pretrained(save_directory,**kwargs)
|
108 |
+
self._tokenizer.pre_tokenizer=self.custom_pre_tokenizer
|
109 |
+
shutil.copy(os.path.abspath(__file__),os.path.join(save_directory,"ud.py"))
|
110 |
+
shutil.copy(cached_file(self.name_or_path,"mecab-jumandic-utf8.zip"),os.path.join(save_directory,"mecab-jumandic-utf8.zip"))
|