KoichiYasuoka
commited on
Commit
·
5a68911
1
Parent(s):
105292f
initial release
Browse files- README.md +111 -0
- config.json +31 -0
- deprel/config.json +127 -0
- deprel/pytorch_model.bin +3 -0
- deprel/special_tokens_map.json +1 -0
- deprel/tokenizer_config.json +1 -0
- deprel/vocab.txt +0 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tagger/config.json +107 -0
- tagger/pytorch_model.bin +3 -0
- tagger/special_tokens_map.json +1 -0
- tagger/tokenizer_config.json +1 -0
- tagger/vocab.txt +0 -0
- tokenizer_config.json +1 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- "ja"
|
4 |
+
tags:
|
5 |
+
- "japanese"
|
6 |
+
- "question-answering"
|
7 |
+
- "dependency-parsing"
|
8 |
+
datasets:
|
9 |
+
- "universal_dependencies"
|
10 |
+
license: "cc-by-sa-4.0"
|
11 |
+
pipeline_tag: "question-answering"
|
12 |
+
widget:
|
13 |
+
- text: "国語"
|
14 |
+
context: "全学年にわたって小学校の国語の教科書に挿し絵が用いられている"
|
15 |
+
- text: "教科書"
|
16 |
+
context: "全学年にわたって小学校の国語の教科書に挿し絵が用いられている"
|
17 |
+
- text: "の"
|
18 |
+
context: "全学年にわたって小学校の国語[MASK]教科書に挿し絵が用いられている"
|
19 |
+
---
|
20 |
+
|
21 |
+
# deberta-large-japanese-unidic-ud-head
|
22 |
+
|
23 |
+
## Model Description
|
24 |
+
|
25 |
+
This is a DeBERTa(V2) model pretrained on 青空文庫 for dependency-parsing (head-detection on long-unit-words) as question-answering, derived from [deberta-large-japanese-unidic](https://huggingface.co/KoichiYasuoka/deberta-large-japanese-unidic) and [UD_Japanese-GSDLUW](https://github.com/UniversalDependencies/UD_Japanese-GSDLUW). Use [MASK] inside `context` to avoid ambiguity when specifying a multiple-used word as `question`.
|
26 |
+
|
27 |
+
## How to Use
|
28 |
+
|
29 |
+
```py
|
30 |
+
import torch
|
31 |
+
from transformers import AutoTokenizer,AutoModelForQuestionAnswering
|
32 |
+
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/deberta-large-japanese-unidic-ud-head")
|
33 |
+
model=AutoModelForQuestionAnswering.from_pretrained("KoichiYasuoka/deberta-large-japanese-unidic-ud-head")
|
34 |
+
question="国語"
|
35 |
+
context="全学年にわたって小学校の国語の教科書に挿し絵が用いられている"
|
36 |
+
inputs=tokenizer(question,context,return_tensors="pt")
|
37 |
+
outputs=model(**inputs)
|
38 |
+
start,end=torch.argmax(outputs.start_logits),torch.argmax(outputs.end_logits)
|
39 |
+
print(tokenizer.convert_ids_to_tokens(inputs["input_ids"][0,start:end+1]))
|
40 |
+
```
|
41 |
+
|
42 |
+
or
|
43 |
+
|
44 |
+
```py
|
45 |
+
from transformers import (AutoTokenizer,AutoModelForQuestionAnswering,
|
46 |
+
AutoModelForTokenClassification,AutoConfig,TokenClassificationPipeline)
|
47 |
+
class TaggerPipeline(TokenClassificationPipeline):
|
48 |
+
def __call__(self,text):
|
49 |
+
d=super().__call__(text)
|
50 |
+
if len(d)>0 and ("start" not in d[0] or d[0]["start"]==None):
|
51 |
+
import tokenizations
|
52 |
+
v=[x["word"] for x in d]
|
53 |
+
a2b,b2a=tokenizations.get_alignments(v,text)
|
54 |
+
for i,t in enumerate(a2b):
|
55 |
+
s,e=(0,0) if t==[] else (t[0],t[-1]+1)
|
56 |
+
if t==[] and v[i]==self.tokenizer.unk_token:
|
57 |
+
s=([[-1]]+[x for x in a2b[0:i] if x>[]])[-1][-1]+1
|
58 |
+
e=([x for x in a2b[i+1:] if x>[]]+[[len(text)]])[0][0]
|
59 |
+
d[i]["start"],d[i]["end"]=s,e
|
60 |
+
return d
|
61 |
+
class TransformersUD(object):
|
62 |
+
def __init__(self,bert):
|
63 |
+
import os
|
64 |
+
self.tokenizer=AutoTokenizer.from_pretrained(bert)
|
65 |
+
self.model=AutoModelForQuestionAnswering.from_pretrained(bert)
|
66 |
+
x=AutoModelForTokenClassification.from_pretrained
|
67 |
+
if os.path.isdir(bert):
|
68 |
+
d,t=x(os.path.join(bert,"deprel")),x(os.path.join(bert,"tagger"))
|
69 |
+
else:
|
70 |
+
from transformers.file_utils import hf_bucket_url
|
71 |
+
c=AutoConfig.from_pretrained(hf_bucket_url(bert,"deprel/config.json"))
|
72 |
+
d=x(hf_bucket_url(bert,"deprel/pytorch_model.bin"),config=c)
|
73 |
+
s=AutoConfig.from_pretrained(hf_bucket_url(bert,"tagger/config.json"))
|
74 |
+
t=x(hf_bucket_url(bert,"tagger/pytorch_model.bin"),config=s)
|
75 |
+
self.deprel=TaggerPipeline(model=d,tokenizer=self.tokenizer,
|
76 |
+
aggregation_strategy="simple")
|
77 |
+
self.tagger=TaggerPipeline(model=t,tokenizer=self.tokenizer)
|
78 |
+
def __call__(self,text):
|
79 |
+
import numpy,torch,ufal.chu_liu_edmonds
|
80 |
+
w=[(t["start"],t["end"],t["entity_group"]) for t in self.deprel(text)]
|
81 |
+
z,n={t["start"]:t["entity"].split("|") for t in self.tagger(text)},len(w)
|
82 |
+
r,m=[text[s:e] for s,e,p in w],numpy.full((n+1,n+1),numpy.nan)
|
83 |
+
v,c=self.tokenizer(r,add_special_tokens=False)["input_ids"],[]
|
84 |
+
for i,t in enumerate(v):
|
85 |
+
q=[self.tokenizer.cls_token_id]+t+[self.tokenizer.sep_token_id]
|
86 |
+
c.append([q]+v[0:i]+[[self.tokenizer.mask_token_id]]+v[i+1:]+[[q[-1]]])
|
87 |
+
b=[[len(sum(x[0:j+1],[])) for j in range(len(x))] for x in c]
|
88 |
+
d=self.model(input_ids=torch.tensor([sum(x,[]) for x in c]),
|
89 |
+
token_type_ids=torch.tensor([[0]*x[0]+[1]*(x[-1]-x[0]) for x in b]))
|
90 |
+
s,e=d.start_logits.tolist(),d.end_logits.tolist()
|
91 |
+
for i in range(n):
|
92 |
+
for j in range(n):
|
93 |
+
m[i+1,0 if i==j else j+1]=s[i][b[i][j]]+e[i][b[i][j+1]-1]
|
94 |
+
h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0]
|
95 |
+
if [0 for i in h if i==0]!=[0]:
|
96 |
+
i=([p for s,e,p in w]+["root"]).index("root")
|
97 |
+
j=i+1 if i<n else numpy.nanargmax(m[:,0])
|
98 |
+
m[0:j,0]=m[j+1:,0]=numpy.nan
|
99 |
+
h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0]
|
100 |
+
u="# text = "+text.replace("\n"," ")+"\n"
|
101 |
+
for i,(s,e,p) in enumerate(w,1):
|
102 |
+
p="root" if h[i]==0 else "dep" if p=="root" else p
|
103 |
+
u+="\t".join([str(i),r[i-1],"_",z[s][0][2:],"_","|".join(z[s][1:]),
|
104 |
+
str(h[i]),p,"_","_" if i<n and w[i][0]<e else "SpaceAfter=No"])+"\n"
|
105 |
+
return u+"\n"
|
106 |
+
|
107 |
+
nlp=TransformersUD("KoichiYasuoka/deberta-large-japanese-unidic-ud-head")
|
108 |
+
print(nlp("全学年にわたって小学校の国語の教科書に挿し絵が用いられ���いる"))
|
109 |
+
```
|
110 |
+
|
111 |
+
[fugashi](https://pypi.org/project/fugashi) [unidic-lite](https://pypi.org/project/unidic-lite) [pytokenizations](https://pypi.org/project/pytokenizations) and [ufal.chu-liu-edmonds](https://pypi.org/project/ufal.chu-liu-edmonds/) required.
|
config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"DebertaV2ForQuestionAnswering"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 1024,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 4096,
|
13 |
+
"layer_norm_eps": 1e-07,
|
14 |
+
"max_position_embeddings": 512,
|
15 |
+
"max_relative_positions": -1,
|
16 |
+
"model_type": "deberta-v2",
|
17 |
+
"num_attention_heads": 16,
|
18 |
+
"num_hidden_layers": 24,
|
19 |
+
"pad_token_id": 1,
|
20 |
+
"pooler_dropout": 0,
|
21 |
+
"pooler_hidden_act": "gelu",
|
22 |
+
"pooler_hidden_size": 1024,
|
23 |
+
"pos_att_type": null,
|
24 |
+
"position_biased_input": true,
|
25 |
+
"relative_attention": false,
|
26 |
+
"tokenizer_class": "BertJapaneseTokenizer",
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.19.4",
|
29 |
+
"type_vocab_size": 0,
|
30 |
+
"vocab_size": 32000
|
31 |
+
}
|
deprel/config.json
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"DebertaV2ForTokenClassification"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 1024,
|
11 |
+
"id2label": {
|
12 |
+
"0": "B-acl",
|
13 |
+
"1": "B-advcl",
|
14 |
+
"2": "B-advmod",
|
15 |
+
"3": "B-amod",
|
16 |
+
"4": "B-aux",
|
17 |
+
"5": "B-case",
|
18 |
+
"6": "B-cc",
|
19 |
+
"7": "B-ccomp",
|
20 |
+
"8": "B-compound",
|
21 |
+
"9": "B-cop",
|
22 |
+
"10": "B-csubj",
|
23 |
+
"11": "B-dep",
|
24 |
+
"12": "B-det",
|
25 |
+
"13": "B-discourse",
|
26 |
+
"14": "B-dislocated",
|
27 |
+
"15": "B-fixed",
|
28 |
+
"16": "B-mark",
|
29 |
+
"17": "B-nmod",
|
30 |
+
"18": "B-nsubj",
|
31 |
+
"19": "B-nummod",
|
32 |
+
"20": "B-obj",
|
33 |
+
"21": "B-obl",
|
34 |
+
"22": "B-punct",
|
35 |
+
"23": "B-root",
|
36 |
+
"24": "I-acl",
|
37 |
+
"25": "I-advcl",
|
38 |
+
"26": "I-advmod",
|
39 |
+
"27": "I-amod",
|
40 |
+
"28": "I-aux",
|
41 |
+
"29": "I-case",
|
42 |
+
"30": "I-cc",
|
43 |
+
"31": "I-ccomp",
|
44 |
+
"32": "I-compound",
|
45 |
+
"33": "I-csubj",
|
46 |
+
"34": "I-dep",
|
47 |
+
"35": "I-discourse",
|
48 |
+
"36": "I-dislocated",
|
49 |
+
"37": "I-fixed",
|
50 |
+
"38": "I-mark",
|
51 |
+
"39": "I-nmod",
|
52 |
+
"40": "I-nsubj",
|
53 |
+
"41": "I-nummod",
|
54 |
+
"42": "I-obj",
|
55 |
+
"43": "I-obl",
|
56 |
+
"44": "I-punct",
|
57 |
+
"45": "I-root"
|
58 |
+
},
|
59 |
+
"initializer_range": 0.02,
|
60 |
+
"intermediate_size": 4096,
|
61 |
+
"label2id": {
|
62 |
+
"B-acl": 0,
|
63 |
+
"B-advcl": 1,
|
64 |
+
"B-advmod": 2,
|
65 |
+
"B-amod": 3,
|
66 |
+
"B-aux": 4,
|
67 |
+
"B-case": 5,
|
68 |
+
"B-cc": 6,
|
69 |
+
"B-ccomp": 7,
|
70 |
+
"B-compound": 8,
|
71 |
+
"B-cop": 9,
|
72 |
+
"B-csubj": 10,
|
73 |
+
"B-dep": 11,
|
74 |
+
"B-det": 12,
|
75 |
+
"B-discourse": 13,
|
76 |
+
"B-dislocated": 14,
|
77 |
+
"B-fixed": 15,
|
78 |
+
"B-mark": 16,
|
79 |
+
"B-nmod": 17,
|
80 |
+
"B-nsubj": 18,
|
81 |
+
"B-nummod": 19,
|
82 |
+
"B-obj": 20,
|
83 |
+
"B-obl": 21,
|
84 |
+
"B-punct": 22,
|
85 |
+
"B-root": 23,
|
86 |
+
"I-acl": 24,
|
87 |
+
"I-advcl": 25,
|
88 |
+
"I-advmod": 26,
|
89 |
+
"I-amod": 27,
|
90 |
+
"I-aux": 28,
|
91 |
+
"I-case": 29,
|
92 |
+
"I-cc": 30,
|
93 |
+
"I-ccomp": 31,
|
94 |
+
"I-compound": 32,
|
95 |
+
"I-csubj": 33,
|
96 |
+
"I-dep": 34,
|
97 |
+
"I-discourse": 35,
|
98 |
+
"I-dislocated": 36,
|
99 |
+
"I-fixed": 37,
|
100 |
+
"I-mark": 38,
|
101 |
+
"I-nmod": 39,
|
102 |
+
"I-nsubj": 40,
|
103 |
+
"I-nummod": 41,
|
104 |
+
"I-obj": 42,
|
105 |
+
"I-obl": 43,
|
106 |
+
"I-punct": 44,
|
107 |
+
"I-root": 45
|
108 |
+
},
|
109 |
+
"layer_norm_eps": 1e-07,
|
110 |
+
"max_position_embeddings": 512,
|
111 |
+
"max_relative_positions": -1,
|
112 |
+
"model_type": "deberta-v2",
|
113 |
+
"num_attention_heads": 16,
|
114 |
+
"num_hidden_layers": 24,
|
115 |
+
"pad_token_id": 1,
|
116 |
+
"pooler_dropout": 0,
|
117 |
+
"pooler_hidden_act": "gelu",
|
118 |
+
"pooler_hidden_size": 1024,
|
119 |
+
"pos_att_type": null,
|
120 |
+
"position_biased_input": true,
|
121 |
+
"relative_attention": false,
|
122 |
+
"tokenizer_class": "BertJapaneseTokenizer",
|
123 |
+
"torch_dtype": "float32",
|
124 |
+
"transformers_version": "4.19.4",
|
125 |
+
"type_vocab_size": 0,
|
126 |
+
"vocab_size": 32000
|
127 |
+
}
|
deprel/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b1b76204a00e2ebc32a592fdd6408ff61a27cc9d2fbd1c1e5176fe7f58801f1b
|
3 |
+
size 1342740275
|
deprel/special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
deprel/tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "do_lower_case": false, "do_word_tokenize": true, "do_subword_tokenize": true, "word_tokenizer_type": "mecab", "subword_tokenizer_type": "wordpiece", "never_split": ["[CLS]", "[PAD]", "[SEP]", "[UNK]", "[MASK]"], "mecab_kwargs": {"mecab_dic": "unidic_lite"}, "model_max_length": 512, "tokenizer_class": "BertJapaneseTokenizer"}
|
deprel/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53fd6776eae30439ef3af59a4ba242444f7ff45ecbfb7c8d4cd366084cd5bac6
|
3 |
+
size 1342559923
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tagger/config.json
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"DebertaV2ForTokenClassification"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 1024,
|
11 |
+
"id2label": {
|
12 |
+
"0": "B-ADJ|_",
|
13 |
+
"1": "B-ADP|_",
|
14 |
+
"2": "B-ADV|_",
|
15 |
+
"3": "B-AUX|Polarity=Neg",
|
16 |
+
"4": "B-AUX|_",
|
17 |
+
"5": "B-CCONJ|_",
|
18 |
+
"6": "B-DET|_",
|
19 |
+
"7": "B-INTJ|_",
|
20 |
+
"8": "B-NOUN|Polarity=Neg",
|
21 |
+
"9": "B-NOUN|_",
|
22 |
+
"10": "B-NUM|_",
|
23 |
+
"11": "B-PART|_",
|
24 |
+
"12": "B-PRON|_",
|
25 |
+
"13": "B-PROPN|_",
|
26 |
+
"14": "B-PUNCT|_",
|
27 |
+
"15": "B-SCONJ|_",
|
28 |
+
"16": "B-SYM|_",
|
29 |
+
"17": "B-VERB|_",
|
30 |
+
"18": "B-X|_",
|
31 |
+
"19": "I-ADJ|_",
|
32 |
+
"20": "I-ADP|_",
|
33 |
+
"21": "I-ADV|_",
|
34 |
+
"22": "I-AUX|Polarity=Neg",
|
35 |
+
"23": "I-AUX|_",
|
36 |
+
"24": "I-CCONJ|_",
|
37 |
+
"25": "I-INTJ|_",
|
38 |
+
"26": "I-NOUN|_",
|
39 |
+
"27": "I-NUM|_",
|
40 |
+
"28": "I-PART|_",
|
41 |
+
"29": "I-PRON|_",
|
42 |
+
"30": "I-PROPN|_",
|
43 |
+
"31": "I-PUNCT|_",
|
44 |
+
"32": "I-SCONJ|_",
|
45 |
+
"33": "I-SYM|_",
|
46 |
+
"34": "I-VERB|_",
|
47 |
+
"35": "I-X|_"
|
48 |
+
},
|
49 |
+
"initializer_range": 0.02,
|
50 |
+
"intermediate_size": 4096,
|
51 |
+
"label2id": {
|
52 |
+
"B-ADJ|_": 0,
|
53 |
+
"B-ADP|_": 1,
|
54 |
+
"B-ADV|_": 2,
|
55 |
+
"B-AUX|Polarity=Neg": 3,
|
56 |
+
"B-AUX|_": 4,
|
57 |
+
"B-CCONJ|_": 5,
|
58 |
+
"B-DET|_": 6,
|
59 |
+
"B-INTJ|_": 7,
|
60 |
+
"B-NOUN|Polarity=Neg": 8,
|
61 |
+
"B-NOUN|_": 9,
|
62 |
+
"B-NUM|_": 10,
|
63 |
+
"B-PART|_": 11,
|
64 |
+
"B-PRON|_": 12,
|
65 |
+
"B-PROPN|_": 13,
|
66 |
+
"B-PUNCT|_": 14,
|
67 |
+
"B-SCONJ|_": 15,
|
68 |
+
"B-SYM|_": 16,
|
69 |
+
"B-VERB|_": 17,
|
70 |
+
"B-X|_": 18,
|
71 |
+
"I-ADJ|_": 19,
|
72 |
+
"I-ADP|_": 20,
|
73 |
+
"I-ADV|_": 21,
|
74 |
+
"I-AUX|Polarity=Neg": 22,
|
75 |
+
"I-AUX|_": 23,
|
76 |
+
"I-CCONJ|_": 24,
|
77 |
+
"I-INTJ|_": 25,
|
78 |
+
"I-NOUN|_": 26,
|
79 |
+
"I-NUM|_": 27,
|
80 |
+
"I-PART|_": 28,
|
81 |
+
"I-PRON|_": 29,
|
82 |
+
"I-PROPN|_": 30,
|
83 |
+
"I-PUNCT|_": 31,
|
84 |
+
"I-SCONJ|_": 32,
|
85 |
+
"I-SYM|_": 33,
|
86 |
+
"I-VERB|_": 34,
|
87 |
+
"I-X|_": 35
|
88 |
+
},
|
89 |
+
"layer_norm_eps": 1e-07,
|
90 |
+
"max_position_embeddings": 512,
|
91 |
+
"max_relative_positions": -1,
|
92 |
+
"model_type": "deberta-v2",
|
93 |
+
"num_attention_heads": 16,
|
94 |
+
"num_hidden_layers": 24,
|
95 |
+
"pad_token_id": 1,
|
96 |
+
"pooler_dropout": 0,
|
97 |
+
"pooler_hidden_act": "gelu",
|
98 |
+
"pooler_hidden_size": 1024,
|
99 |
+
"pos_att_type": null,
|
100 |
+
"position_biased_input": true,
|
101 |
+
"relative_attention": false,
|
102 |
+
"tokenizer_class": "BertJapaneseTokenizer",
|
103 |
+
"torch_dtype": "float32",
|
104 |
+
"transformers_version": "4.19.4",
|
105 |
+
"type_vocab_size": 0,
|
106 |
+
"vocab_size": 32000
|
107 |
+
}
|
tagger/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:774dc23b70f8ddea398ff14ea4e07e6528e2f457344696d20a8f7fbb206f01e1
|
3 |
+
size 1342699315
|
tagger/special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tagger/tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "do_lower_case": false, "do_word_tokenize": true, "do_subword_tokenize": true, "word_tokenizer_type": "mecab", "subword_tokenizer_type": "wordpiece", "never_split": ["[CLS]", "[PAD]", "[SEP]", "[UNK]", "[MASK]"], "mecab_kwargs": {"mecab_dic": "unidic_lite"}, "model_max_length": 512, "tokenizer_class": "BertJapaneseTokenizer"}
|
tagger/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "do_lower_case": false, "do_word_tokenize": true, "do_subword_tokenize": true, "word_tokenizer_type": "mecab", "subword_tokenizer_type": "wordpiece", "never_split": ["[CLS]", "[PAD]", "[SEP]", "[UNK]", "[MASK]"], "mecab_kwargs": {"mecab_dic": "unidic_lite"}, "model_max_length": 512, "tokenizer_class": "BertJapaneseTokenizer"}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|