#! /usr/bin/python3 src="ClassCat/gpt2-base-japanese-v2" tgt="KoichiYasuoka/gpt2-base-japanese-upos" import os from transformers import AutoTokenizer,AutoConfig,GPT2ForTokenClassification,DataCollatorForTokenClassification,TrainingArguments,Trainer os.system("test -f ja_gsd_modern.conllu || curl -LO https://github.com/KoichiYasuoka/SuPar-UniDic/raw/main/suparunidic/suparmodels/ja_gsd_modern.conllu") class UPOSFileDataset(object): def __init__(self,conllu,tokenizer): self.conllu=open(conllu,"r",encoding="utf-8") self.tokenizer=tokenizer self.seeks=[0] self.multiword={} label=set(["SYM"]) s=self.conllu.readline() while s!="": if s=="\n": self.seeks.append(self.conllu.tell()) else: w=s.split("\t") if len(w)==10: if w[0].isdecimal(): label.add(w[3] if w[5]=="_" else w[3]+"|"+w[5]) elif w[0].find("-")>0: t=w[0].split("-") f,j,k=w[1],[],[] for i in range(int(t[0]),int(t[1])+1): w=self.conllu.readline().split("\t") j.append(w[3] if w[5]=="_" else w[3]+"|"+w[5]) k.append(w[1]) p="+".join(j) label.add(p) if p in self.multiword: self.multiword[p][f]=list(k) else: self.multiword[p]={f:list(k)} s=self.conllu.readline() lid={} for i,l in enumerate(sorted(label)): lid[l],lid["B-"+l],lid["I-"+l]=i*3,i*3+1,i*3+2 self.label2id=lid def __call__(*args): lid={l:i for i,l in enumerate(sorted(set(sum([list(t.label2id) for t in args],[]))))} for t in args: t.label2id=lid return lid def __del__(self): self.conllu.close() __len__=lambda self:len(self.seeks)-1 def __getitem__(self,i): self.conllu.seek(self.seeks[i]) form,upos=[],[] while self.conllu.tell()0: t=w[0].split("-") u=[] for j in range(int(t[0]),int(t[1])+1): k=self.conllu.readline().split("\t") u.append(k[3] if k[5]=="_" else k[3]+"|"+k[5]) upos.append("+".join(u)) v=self.tokenizer(form,add_special_tokens=False) i,u=[],[] for j,(x,y) in enumerate(zip(v["input_ids"],upos)): if x!=[]: i+=x u+=[y] if len(x)==1 else ["B-"+y]+["I-"+y]*(len(x)-1) if len(i)",pad_token="<|endoftext|>",model_max_length=1024) trainDS=UPOSFileDataset("ja_gsd_modern.conllu",tkz) lid=trainDS.label2id cfg=AutoConfig.from_pretrained(src,num_labels=len(lid),label2id=lid,id2label={i:l for l,i in lid.items()},ignore_mismatched_sizes=True) arg=TrainingArguments(num_train_epochs=3,per_device_train_batch_size=16,output_dir=tgt,overwrite_output_dir=True,save_total_limit=2,learning_rate=5e-05,warmup_ratio=0.1,save_safetensors=False) trn=Trainer(args=arg,data_collator=DataCollatorForTokenClassification(tkz),model=GPT2ForTokenClassification.from_pretrained(src,config=cfg,ignore_mismatched_sizes=True),train_dataset=trainDS) trn.train() trn.save_model(tgt) tkz.save_pretrained(tgt)