File size: 1,467 Bytes
7d646ae
 
 
 
 
 
 
301e5f9
7d646ae
 
 
 
 
 
 
 
 
 
 
 
020c27e
7d646ae
 
 
 
 
 
 
 
 
020c27e
 
 
 
 
 
 
 
ace4721
 
 
 
020c27e
 
d668849
020c27e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
---
language:
- "ja"
tags:
- "japanese"
- "token-classification"
- "pos"
base_model: ku-nlp/gpt2-large-japanese-char
datasets:
- "universal_dependencies"
license: "cc-by-sa-4.0"
pipeline_tag: "token-classification"
widget:
- text: "国境の長いトンネルを抜けると雪国であった。"
---

# gpt2-large-japanese-upos

## Model Description

This is a GPT-2 model for POS-tagging and dependency-parsing, derived from [gpt2-large-japanese-char](https://huggingface.co/ku-nlp/gpt2-large-japanese-char). Every short-unit-word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech) and [FEATS](https://universaldependencies.org/u/feat/).

## How to Use

```py
from transformers import pipeline
nlp=pipeline("upos","KoichiYasuoka/gpt2-large-japanese-upos",trust_remote_code=True,aggregation_strategy="simple")
print(nlp("国境の長いトンネルを抜けると雪国であった。"))
```

or

```py
import esupar
nlp=esupar.load("KoichiYasuoka/gpt2-large-japanese-upos")
print(nlp("国境の長いトンネルを抜けると雪国であった。"))
```

## Reference

安岡孝一: [GPT系モデルの系列ラベリングによる品詞付与](http://hdl.handle.net/2433/288964), 東洋学へのコンピュータ利用, 第38回研究セミナー (2024年7月26日), pp.3-10.

## See Also

[esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa/GPT models