File size: 5,896 Bytes
f9213b6 c0eddda f9213b6 09d44f6 f9213b6 09d44f6 f9213b6 09d44f6 f9213b6 d209cbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import numpy
from transformers import TokenClassificationPipeline
class BellmanFordTokenClassificationPipeline(TokenClassificationPipeline):
def __init__(self,**kwargs):
super().__init__(**kwargs)
x=self.model.config.label2id
y=[k for k in x if k.startswith("B-") or not (k.startswith("I-") or k.endswith("|root") or k.find("|l-")>0 or k.find("|r-")>0)]
self.transition=numpy.full((len(x),len(x)),numpy.nan)
for k,v in x.items():
for j in ["I-"+k[2:]] if k.startswith("B-") else [k]+y if k.startswith("I-") else y:
self.transition[v,x[j]]=0
def check_model_type(self,supported_models):
pass
def postprocess(self,model_outputs,**kwargs):
if "logits" not in model_outputs:
return self.postprocess(model_outputs[0],**kwargs)
m=model_outputs["logits"][0].numpy()
e=numpy.exp(m-numpy.max(m,axis=-1,keepdims=True))
z=e/e.sum(axis=-1,keepdims=True)
for i in range(m.shape[0]-1,0,-1):
m[i-1]+=numpy.nanmax(m[i]+self.transition,axis=1)
k=[numpy.nanargmax(m[0]+self.transition[0])]
for i in range(1,m.shape[0]):
k.append(numpy.nanargmax(m[i]+self.transition[k[-1]]))
w=[{"entity":self.model.config.id2label[j],"start":s,"end":e,"score":z[i,j]} for i,((s,e),j) in enumerate(zip(model_outputs["offset_mapping"][0].tolist(),k)) if s<e]
if "aggregation_strategy" in kwargs and kwargs["aggregation_strategy"]!="none":
for i,t in reversed(list(enumerate(w))):
p=t.pop("entity")
if p.startswith("I-"):
w[i-1]["score"]=min(w[i-1]["score"],t["score"])
w[i-1]["end"]=w.pop(i)["end"]
elif p.startswith("B-"):
t["entity_group"]=p[2:]
else:
t["entity_group"]=p
for t in w:
t["text"]=model_outputs["sentence"][t["start"]:t["end"]]
return w
class UniversalDependenciesCausalPipeline(BellmanFordTokenClassificationPipeline):
def __init__(self,**kwargs):
kwargs["aggregation_strategy"]="simple"
super().__init__(**kwargs)
x=self.model.config.label2id
self.root=numpy.full((len(x)),numpy.nan)
self.left_arc=numpy.full((len(x)),numpy.nan)
self.right_arc=numpy.full((len(x)),numpy.nan)
for k,v in x.items():
if k.endswith("|root"):
self.root[v]=0
elif k.find("|l-")>0:
self.left_arc[v]=0
elif k.find("|r-")>0:
self.right_arc[v]=0
def postprocess(self,model_outputs,**kwargs):
import torch
if "logits" not in model_outputs:
return self.postprocess(model_outputs[0],**kwargs)
m=model_outputs["logits"][0].numpy()
for i in range(m.shape[0]-1,0,-1):
m[i-1]+=numpy.nanmax(m[i]+self.transition,axis=1)
k=[numpy.nanargmax(m[0]+self.transition[0])]
for i in range(1,m.shape[0]):
k.append(numpy.nanargmax(m[i]+self.transition[k[-1]]))
w=[{"entity":self.model.config.id2label[j],"start":s,"end":e} for i,((s,e),j) in enumerate(zip(model_outputs["offset_mapping"][0].tolist(),k)) if s<e]
for i,t in reversed(list(enumerate(w))):
p=t.pop("entity")
if p.startswith("I-"):
w[i-1]["end"]=max(w.pop(i)["end"],w[i-1]["end"])
elif i>0 and w[i-1]["end"]>w[i]["start"]:
w[i-1]["end"]=max(w.pop(i)["end"],w[i-1]["end"])
elif p.startswith("B-"):
t["entity_group"]=p[2:]
else:
t["entity_group"]=p
d=[model_outputs["sentence"][t["start"]:t["end"]] for t in w]
v=self.tokenizer(d,add_special_tokens=False)
e=self.model.get_input_embeddings().weight
m=[]
for x in v["input_ids"]:
if x==[]:
x=[self.tokenizer.unk_token_id]
m.append(e[x,:].sum(axis=0))
m.append(e[self.tokenizer.sep_token_id,:])
m.append(e[self.tokenizer.pad_token_id,:])
m=torch.stack(m).to(self.device)
k=list(range(len(d)+1))
e=[]
with torch.no_grad():
for i in range(len(d)):
e.append(self.model(inputs_embeds=torch.unsqueeze(m[k+list(range(i,len(d)))+[-1]*i,:],0)).logits[0,-len(d):,:])
e=torch.stack(e).cpu().numpy()
for i in range(len(d)):
for j in range(i):
e[-j-1,-i-1],e[-i-1,-j-1]=e[-i-1,i-j]+self.left_arc,e[-i-1,i-j]+self.right_arc
e[-i-1,-i-1]=e[-i-1,0]+self.root
m,p=numpy.nanmax(e,axis=2),numpy.nanargmax(e,axis=2)
h=self.chu_liu_edmonds(m)
z=[i for i,j in enumerate(h) if i==j]
if len(z)>1:
k,h=z[numpy.nanargmax(m[z,z])],numpy.nanmin(m)-numpy.nanmax(m)
m[:,z]+=[[0 if j in z and (i!=j or i==k) else h for i in z] for j in range(m.shape[0])]
h=self.chu_liu_edmonds(m)
q=[self.model.config.id2label[p[j,i]].split("|") for i,j in enumerate(h)]
t=model_outputs["sentence"].replace("\n"," ")
u="# text = "+t+"\n"
for i,j in enumerate(d):
u+="\t".join([str(i+1),j,"_",q[i][0],"_","_" if len(q[i])<3 else "|".join(q[i][1:-1]),str(0 if h[i]==i else h[i]+1),"root" if q[i][-1]=="root" else q[i][-1][2:],"_","_" if i+1<len(d) and w[i]["end"]<w[i+1]["start"] else "SpaceAfter=No"])+"\n"
return u+"\n"
def chu_liu_edmonds(self,matrix):
h=numpy.nanargmax(matrix,axis=0)
x=[-1 if i==j else j for i,j in enumerate(h)]
for b in [lambda x,i,j:-1 if i not in x else x[i],lambda x,i,j:-1 if j<0 else x[j]]:
y=[]
while x!=y:
y=list(x)
for i,j in enumerate(x):
x[i]=b(x,i,j)
if max(x)<0:
return h
y,x=[i for i,j in enumerate(x) if j==max(x)],[i for i,j in enumerate(x) if j<max(x)]
z=matrix-numpy.nanmax(matrix,axis=0)
m=numpy.block([[z[x,:][:,x],numpy.nanmax(z[x,:][:,y],axis=1).reshape(len(x),1)],[numpy.nanmax(z[y,:][:,x],axis=0),numpy.nanmax(z[y,y])]])
k=[j if i==len(x) else x[j] if j<len(x) else y[numpy.nanargmax(z[y,x[i]])] for i,j in enumerate(self.chu_liu_edmonds(m))]
h=[j if i in y else k[x.index(i)] for i,j in enumerate(h)]
i=y[numpy.nanargmax(z[x[k[-1]],y] if k[-1]<len(x) else z[y,y])]
h[i]=x[k[-1]] if k[-1]<len(x) else i
return h
|