File size: 5,896 Bytes
f9213b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0eddda
 
 
f9213b6
 
 
 
 
 
 
 
 
 
 
 
 
 
09d44f6
f9213b6
09d44f6
f9213b6
09d44f6
 
 
f9213b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d209cbd
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import numpy
from transformers import TokenClassificationPipeline

class BellmanFordTokenClassificationPipeline(TokenClassificationPipeline):
  def __init__(self,**kwargs):
    super().__init__(**kwargs)
    x=self.model.config.label2id
    y=[k for k in x if k.startswith("B-") or not (k.startswith("I-") or k.endswith("|root") or k.find("|l-")>0 or k.find("|r-")>0)]
    self.transition=numpy.full((len(x),len(x)),numpy.nan)
    for k,v in x.items():
      for j in ["I-"+k[2:]] if k.startswith("B-") else [k]+y if k.startswith("I-") else y:
        self.transition[v,x[j]]=0
  def check_model_type(self,supported_models):
    pass
  def postprocess(self,model_outputs,**kwargs):
    if "logits" not in model_outputs:
      return self.postprocess(model_outputs[0],**kwargs)
    m=model_outputs["logits"][0].numpy()
    e=numpy.exp(m-numpy.max(m,axis=-1,keepdims=True))
    z=e/e.sum(axis=-1,keepdims=True)
    for i in range(m.shape[0]-1,0,-1):
      m[i-1]+=numpy.nanmax(m[i]+self.transition,axis=1)
    k=[numpy.nanargmax(m[0]+self.transition[0])]
    for i in range(1,m.shape[0]):
      k.append(numpy.nanargmax(m[i]+self.transition[k[-1]]))
    w=[{"entity":self.model.config.id2label[j],"start":s,"end":e,"score":z[i,j]} for i,((s,e),j) in enumerate(zip(model_outputs["offset_mapping"][0].tolist(),k)) if s<e]
    if "aggregation_strategy" in kwargs and kwargs["aggregation_strategy"]!="none":
      for i,t in reversed(list(enumerate(w))):
        p=t.pop("entity")
        if p.startswith("I-"):
          w[i-1]["score"]=min(w[i-1]["score"],t["score"])
          w[i-1]["end"]=w.pop(i)["end"]
        elif p.startswith("B-"):
          t["entity_group"]=p[2:]
        else:
          t["entity_group"]=p
    for t in w:
      t["text"]=model_outputs["sentence"][t["start"]:t["end"]]
    return w

class UniversalDependenciesCausalPipeline(BellmanFordTokenClassificationPipeline):
  def __init__(self,**kwargs):
    kwargs["aggregation_strategy"]="simple"
    super().__init__(**kwargs)
    x=self.model.config.label2id
    self.root=numpy.full((len(x)),numpy.nan)
    self.left_arc=numpy.full((len(x)),numpy.nan)
    self.right_arc=numpy.full((len(x)),numpy.nan)
    for k,v in x.items():
      if k.endswith("|root"):
        self.root[v]=0
      elif k.find("|l-")>0:
        self.left_arc[v]=0
      elif k.find("|r-")>0:
        self.right_arc[v]=0
  def postprocess(self,model_outputs,**kwargs):
    import torch
    if "logits" not in model_outputs:
      return self.postprocess(model_outputs[0],**kwargs)
    m=model_outputs["logits"][0].numpy()
    for i in range(m.shape[0]-1,0,-1):
      m[i-1]+=numpy.nanmax(m[i]+self.transition,axis=1)
    k=[numpy.nanargmax(m[0]+self.transition[0])]
    for i in range(1,m.shape[0]):
      k.append(numpy.nanargmax(m[i]+self.transition[k[-1]]))
    w=[{"entity":self.model.config.id2label[j],"start":s,"end":e} for i,((s,e),j) in enumerate(zip(model_outputs["offset_mapping"][0].tolist(),k)) if s<e]
    for i,t in reversed(list(enumerate(w))):
      p=t.pop("entity")
      if p.startswith("I-"):
        w[i-1]["end"]=max(w.pop(i)["end"],w[i-1]["end"])
      elif i>0 and w[i-1]["end"]>w[i]["start"]:
        w[i-1]["end"]=max(w.pop(i)["end"],w[i-1]["end"])
      elif p.startswith("B-"):
        t["entity_group"]=p[2:]
      else:
        t["entity_group"]=p
    d=[model_outputs["sentence"][t["start"]:t["end"]] for t in w]
    v=self.tokenizer(d,add_special_tokens=False)
    e=self.model.get_input_embeddings().weight
    m=[]
    for x in v["input_ids"]:
      if x==[]:
        x=[self.tokenizer.unk_token_id]
      m.append(e[x,:].sum(axis=0))
    m.append(e[self.tokenizer.sep_token_id,:])
    m.append(e[self.tokenizer.pad_token_id,:])
    m=torch.stack(m).to(self.device)
    k=list(range(len(d)+1))
    e=[]
    with torch.no_grad():
      for i in range(len(d)):
        e.append(self.model(inputs_embeds=torch.unsqueeze(m[k+list(range(i,len(d)))+[-1]*i,:],0)).logits[0,-len(d):,:])
    e=torch.stack(e).cpu().numpy()
    for i in range(len(d)):
      for j in range(i):
        e[-j-1,-i-1],e[-i-1,-j-1]=e[-i-1,i-j]+self.left_arc,e[-i-1,i-j]+self.right_arc
      e[-i-1,-i-1]=e[-i-1,0]+self.root
    m,p=numpy.nanmax(e,axis=2),numpy.nanargmax(e,axis=2)
    h=self.chu_liu_edmonds(m)
    z=[i for i,j in enumerate(h) if i==j]
    if len(z)>1:
      k,h=z[numpy.nanargmax(m[z,z])],numpy.nanmin(m)-numpy.nanmax(m)
      m[:,z]+=[[0 if j in z and (i!=j or i==k) else h for i in z] for j in range(m.shape[0])]
      h=self.chu_liu_edmonds(m)
    q=[self.model.config.id2label[p[j,i]].split("|") for i,j in enumerate(h)]
    t=model_outputs["sentence"].replace("\n"," ")
    u="# text = "+t+"\n"
    for i,j in enumerate(d):
      u+="\t".join([str(i+1),j,"_",q[i][0],"_","_" if len(q[i])<3 else "|".join(q[i][1:-1]),str(0 if h[i]==i else h[i]+1),"root" if q[i][-1]=="root" else q[i][-1][2:],"_","_" if i+1<len(d) and w[i]["end"]<w[i+1]["start"] else "SpaceAfter=No"])+"\n"
    return u+"\n"
  def chu_liu_edmonds(self,matrix):
    h=numpy.nanargmax(matrix,axis=0)
    x=[-1 if i==j else j for i,j in enumerate(h)]
    for b in [lambda x,i,j:-1 if i not in x else x[i],lambda x,i,j:-1 if j<0 else x[j]]:
      y=[]
      while x!=y:
        y=list(x)
        for i,j in enumerate(x):
          x[i]=b(x,i,j)
      if max(x)<0:
        return h
    y,x=[i for i,j in enumerate(x) if j==max(x)],[i for i,j in enumerate(x) if j<max(x)]
    z=matrix-numpy.nanmax(matrix,axis=0)
    m=numpy.block([[z[x,:][:,x],numpy.nanmax(z[x,:][:,y],axis=1).reshape(len(x),1)],[numpy.nanmax(z[y,:][:,x],axis=0),numpy.nanmax(z[y,y])]])
    k=[j if i==len(x) else x[j] if j<len(x) else y[numpy.nanargmax(z[y,x[i]])] for i,j in enumerate(self.chu_liu_edmonds(m))]
    h=[j if i in y else k[x.index(i)] for i,j in enumerate(h)]
    i=y[numpy.nanargmax(z[x[k[-1]],y] if k[-1]<len(x) else z[y,y])]
    h[i]=x[k[-1]] if k[-1]<len(x) else i
    return h