KoichiYasuoka
commited on
Commit
·
da5fde3
1
Parent(s):
c22ffe2
initial release
Browse files- README.md +32 -0
- config.json +162 -0
- juman.py +49 -0
- maker.py +68 -0
- mecab-jumandic-utf8.zip +3 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +32 -0
- spiece.model +3 -0
- tokenizer.json +0 -0
- tokenizer_config.json +40 -0
- upos.py +41 -0
README.md
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- "ja"
|
4 |
+
tags:
|
5 |
+
- "japanese"
|
6 |
+
- "token-classification"
|
7 |
+
- "pos"
|
8 |
+
base_model: nlp-waseda/gpt2-small-japanese
|
9 |
+
datasets:
|
10 |
+
- "universal_dependencies"
|
11 |
+
license: "cc-by-sa-4.0"
|
12 |
+
pipeline_tag: "token-classification"
|
13 |
+
widget:
|
14 |
+
- text: "国境の長いトンネルを抜けると雪国であった。"
|
15 |
+
---
|
16 |
+
|
17 |
+
# gpt2-small-japanese-juman-upos
|
18 |
+
|
19 |
+
## Model Description
|
20 |
+
|
21 |
+
This is a GPT-2 model for POS-tagging, derived from [gpt2-small-japanese](https://huggingface.co/nlp-waseda/gpt2-small-japanese). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech) and [FEATS](https://universaldependencies.org/u/feat/).
|
22 |
+
|
23 |
+
## How to Use
|
24 |
+
|
25 |
+
```py
|
26 |
+
from transformers import pipeline
|
27 |
+
nlp=pipeline("upos","KoichiYasuoka/gpt2-small-japanese-juman-upos",trust_remote_code=True,aggregation_strategy="simple")
|
28 |
+
print(nlp("国境の長いトンネルを抜けると雪国であった。"))
|
29 |
+
```
|
30 |
+
|
31 |
+
[fugashi](https://pypi.org/project/fugashi) is required.
|
32 |
+
|
config.json
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation_function": "gelu_new",
|
3 |
+
"architectures": [
|
4 |
+
"GPT2ForTokenClassification"
|
5 |
+
],
|
6 |
+
"attn_pdrop": 0.1,
|
7 |
+
"bos_token_id": 2,
|
8 |
+
"custom_pipelines": {
|
9 |
+
"upos": {
|
10 |
+
"impl": "upos.BellmanFordTokenClassificationPipeline",
|
11 |
+
"pt": "AutoModelForTokenClassification"
|
12 |
+
}
|
13 |
+
},
|
14 |
+
"embd_pdrop": 0.1,
|
15 |
+
"eos_token_id": 2,
|
16 |
+
"id2label": {
|
17 |
+
"0": "ADJ",
|
18 |
+
"1": "B-ADJ",
|
19 |
+
"2": "I-ADJ",
|
20 |
+
"3": "ADJ|Polarity=Neg",
|
21 |
+
"4": "B-ADJ|Polarity=Neg",
|
22 |
+
"5": "I-ADJ|Polarity=Neg",
|
23 |
+
"6": "ADP",
|
24 |
+
"7": "B-ADP",
|
25 |
+
"8": "I-ADP",
|
26 |
+
"9": "ADV",
|
27 |
+
"10": "B-ADV",
|
28 |
+
"11": "I-ADV",
|
29 |
+
"12": "AUX",
|
30 |
+
"13": "B-AUX",
|
31 |
+
"14": "I-AUX",
|
32 |
+
"15": "AUX|Polarity=Neg",
|
33 |
+
"16": "B-AUX|Polarity=Neg",
|
34 |
+
"17": "I-AUX|Polarity=Neg",
|
35 |
+
"18": "CCONJ",
|
36 |
+
"19": "B-CCONJ",
|
37 |
+
"20": "I-CCONJ",
|
38 |
+
"21": "DET",
|
39 |
+
"22": "B-DET",
|
40 |
+
"23": "I-DET",
|
41 |
+
"24": "INTJ",
|
42 |
+
"25": "B-INTJ",
|
43 |
+
"26": "I-INTJ",
|
44 |
+
"27": "NOUN",
|
45 |
+
"28": "B-NOUN",
|
46 |
+
"29": "I-NOUN",
|
47 |
+
"30": "NOUN|Polarity=Neg",
|
48 |
+
"31": "B-NOUN|Polarity=Neg",
|
49 |
+
"32": "I-NOUN|Polarity=Neg",
|
50 |
+
"33": "NUM",
|
51 |
+
"34": "B-NUM",
|
52 |
+
"35": "I-NUM",
|
53 |
+
"36": "PART",
|
54 |
+
"37": "B-PART",
|
55 |
+
"38": "I-PART",
|
56 |
+
"39": "PRON",
|
57 |
+
"40": "B-PRON",
|
58 |
+
"41": "I-PRON",
|
59 |
+
"42": "PROPN",
|
60 |
+
"43": "B-PROPN",
|
61 |
+
"44": "I-PROPN",
|
62 |
+
"45": "PUNCT",
|
63 |
+
"46": "B-PUNCT",
|
64 |
+
"47": "I-PUNCT",
|
65 |
+
"48": "SCONJ",
|
66 |
+
"49": "B-SCONJ",
|
67 |
+
"50": "I-SCONJ",
|
68 |
+
"51": "SYM",
|
69 |
+
"52": "B-SYM",
|
70 |
+
"53": "I-SYM",
|
71 |
+
"54": "VERB",
|
72 |
+
"55": "B-VERB",
|
73 |
+
"56": "I-VERB",
|
74 |
+
"57": "X",
|
75 |
+
"58": "B-X",
|
76 |
+
"59": "I-X"
|
77 |
+
},
|
78 |
+
"initializer_range": 0.02,
|
79 |
+
"label2id": {
|
80 |
+
"ADJ": 0,
|
81 |
+
"ADJ|Polarity=Neg": 3,
|
82 |
+
"ADP": 6,
|
83 |
+
"ADV": 9,
|
84 |
+
"AUX": 12,
|
85 |
+
"AUX|Polarity=Neg": 15,
|
86 |
+
"B-ADJ": 1,
|
87 |
+
"B-ADJ|Polarity=Neg": 4,
|
88 |
+
"B-ADP": 7,
|
89 |
+
"B-ADV": 10,
|
90 |
+
"B-AUX": 13,
|
91 |
+
"B-AUX|Polarity=Neg": 16,
|
92 |
+
"B-CCONJ": 19,
|
93 |
+
"B-DET": 22,
|
94 |
+
"B-INTJ": 25,
|
95 |
+
"B-NOUN": 28,
|
96 |
+
"B-NOUN|Polarity=Neg": 31,
|
97 |
+
"B-NUM": 34,
|
98 |
+
"B-PART": 37,
|
99 |
+
"B-PRON": 40,
|
100 |
+
"B-PROPN": 43,
|
101 |
+
"B-PUNCT": 46,
|
102 |
+
"B-SCONJ": 49,
|
103 |
+
"B-SYM": 52,
|
104 |
+
"B-VERB": 55,
|
105 |
+
"B-X": 58,
|
106 |
+
"CCONJ": 18,
|
107 |
+
"DET": 21,
|
108 |
+
"I-ADJ": 2,
|
109 |
+
"I-ADJ|Polarity=Neg": 5,
|
110 |
+
"I-ADP": 8,
|
111 |
+
"I-ADV": 11,
|
112 |
+
"I-AUX": 14,
|
113 |
+
"I-AUX|Polarity=Neg": 17,
|
114 |
+
"I-CCONJ": 20,
|
115 |
+
"I-DET": 23,
|
116 |
+
"I-INTJ": 26,
|
117 |
+
"I-NOUN": 29,
|
118 |
+
"I-NOUN|Polarity=Neg": 32,
|
119 |
+
"I-NUM": 35,
|
120 |
+
"I-PART": 38,
|
121 |
+
"I-PRON": 41,
|
122 |
+
"I-PROPN": 44,
|
123 |
+
"I-PUNCT": 47,
|
124 |
+
"I-SCONJ": 50,
|
125 |
+
"I-SYM": 53,
|
126 |
+
"I-VERB": 56,
|
127 |
+
"I-X": 59,
|
128 |
+
"INTJ": 24,
|
129 |
+
"NOUN": 27,
|
130 |
+
"NOUN|Polarity=Neg": 30,
|
131 |
+
"NUM": 33,
|
132 |
+
"PART": 36,
|
133 |
+
"PRON": 39,
|
134 |
+
"PROPN": 42,
|
135 |
+
"PUNCT": 45,
|
136 |
+
"SCONJ": 48,
|
137 |
+
"SYM": 51,
|
138 |
+
"VERB": 54,
|
139 |
+
"X": 57
|
140 |
+
},
|
141 |
+
"layer_norm_epsilon": 1e-05,
|
142 |
+
"model_type": "gpt2",
|
143 |
+
"n_embd": 768,
|
144 |
+
"n_head": 12,
|
145 |
+
"n_inner": null,
|
146 |
+
"n_layer": 12,
|
147 |
+
"n_positions": 1024,
|
148 |
+
"reorder_and_upcast_attn": false,
|
149 |
+
"resid_pdrop": 0.1,
|
150 |
+
"scale_attn_by_inverse_layer_idx": false,
|
151 |
+
"scale_attn_weights": true,
|
152 |
+
"summary_activation": null,
|
153 |
+
"summary_first_dropout": 0.1,
|
154 |
+
"summary_proj_to_labels": true,
|
155 |
+
"summary_type": "cls_index",
|
156 |
+
"summary_use_proj": true,
|
157 |
+
"tokenizer_class": "JumanReformerTokenizerFast",
|
158 |
+
"torch_dtype": "float32",
|
159 |
+
"transformers_version": "4.44.0",
|
160 |
+
"use_cache": true,
|
161 |
+
"vocab_size": 32000
|
162 |
+
}
|
juman.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from transformers import ReformerTokenizerFast
|
3 |
+
from transformers.models.bert_japanese.tokenization_bert_japanese import MecabTokenizer
|
4 |
+
try:
|
5 |
+
from transformers.utils import cached_file
|
6 |
+
except:
|
7 |
+
from transformers.file_utils import cached_path,hf_bucket_url
|
8 |
+
cached_file=lambda x,y:os.path.join(x,y) if os.path.isdir(x) else cached_path(hf_bucket_url(x,y))
|
9 |
+
|
10 |
+
class MecabPreTokenizer(MecabTokenizer):
|
11 |
+
def mecab_split(self,i,normalized_string):
|
12 |
+
t=str(normalized_string)
|
13 |
+
z=[]
|
14 |
+
e=0
|
15 |
+
for c in self.tokenize(t):
|
16 |
+
s=t.find(c,e)
|
17 |
+
e=e if s<0 else s+len(c)
|
18 |
+
z.append((0,0) if s<0 else (s,e))
|
19 |
+
return [normalized_string[s:e] for s,e in z if e>0]
|
20 |
+
def pre_tokenize(self,pretok):
|
21 |
+
pretok.split(self.mecab_split)
|
22 |
+
|
23 |
+
class JumanReformerTokenizerFast(ReformerTokenizerFast):
|
24 |
+
def __init__(self,**kwargs):
|
25 |
+
from tokenizers.pre_tokenizers import PreTokenizer,Metaspace,Sequence
|
26 |
+
super().__init__(**kwargs)
|
27 |
+
d,r="/var/lib/mecab/dic/juman-utf8","/etc/mecabrc"
|
28 |
+
if not (os.path.isdir(d) and os.path.isfile(r)):
|
29 |
+
import zipfile
|
30 |
+
import tempfile
|
31 |
+
self.dicdir=tempfile.TemporaryDirectory()
|
32 |
+
d=self.dicdir.name
|
33 |
+
with zipfile.ZipFile(cached_file(self.name_or_path,"mecab-jumandic-utf8.zip")) as z:
|
34 |
+
z.extractall(d)
|
35 |
+
r=os.path.join(d,"mecabrc")
|
36 |
+
with open(r,"w",encoding="utf-8") as w:
|
37 |
+
print("dicdir =",d,file=w)
|
38 |
+
self.custom_pre_tokenizer=Sequence([PreTokenizer.custom(MecabPreTokenizer(mecab_dic=None,mecab_option="-d "+d+" -r "+r)),Metaspace()])
|
39 |
+
self._tokenizer.pre_tokenizer=self.custom_pre_tokenizer
|
40 |
+
def save_pretrained(self,save_directory,**kwargs):
|
41 |
+
import shutil
|
42 |
+
from tokenizers.pre_tokenizers import Metaspace
|
43 |
+
self._auto_map={"AutoTokenizer":[None,"juman.JumanReformerTokenizerFast"]}
|
44 |
+
self._tokenizer.pre_tokenizer=Metaspace()
|
45 |
+
super().save_pretrained(save_directory,**kwargs)
|
46 |
+
self._tokenizer.pre_tokenizer=self.custom_pre_tokenizer
|
47 |
+
shutil.copy(os.path.abspath(__file__),os.path.join(save_directory,"juman.py"))
|
48 |
+
shutil.copy(cached_file(self.name_or_path,"mecab-jumandic-utf8.zip"),os.path.join(save_directory,"mecab-jumandic-utf8.zip"))
|
49 |
+
|
maker.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#! /usr/bin/python3
|
2 |
+
src="nlp-waseda/gpt2-small-japanese"
|
3 |
+
tgt="KoichiYasuoka/gpt2-small-japanese-juman-upos"
|
4 |
+
|
5 |
+
import os
|
6 |
+
from transformers import AutoTokenizer,AutoConfig,GPT2ForTokenClassification,DataCollatorForTokenClassification,TrainingArguments,Trainer
|
7 |
+
os.system("test -f ja_gsd_modern.conllu || curl -LO https://github.com/KoichiYasuoka/SuPar-UniDic/raw/main/suparunidic/suparmodels/ja_gsd_modern.conllu")
|
8 |
+
|
9 |
+
class UPOSFileDataset(object):
|
10 |
+
def __init__(self,conllu,tokenizer):
|
11 |
+
self.conllu=open(conllu,"r",encoding="utf-8")
|
12 |
+
self.tokenizer=tokenizer
|
13 |
+
self.seeks=[0]
|
14 |
+
label=set(["SYM"])
|
15 |
+
s=self.conllu.readline()
|
16 |
+
while s!="":
|
17 |
+
if s=="\n":
|
18 |
+
self.seeks.append(self.conllu.tell())
|
19 |
+
else:
|
20 |
+
w=s.split("\t")
|
21 |
+
if len(w)==10:
|
22 |
+
if w[0].isdecimal():
|
23 |
+
label.add(w[3] if w[5]=="_" else w[3]+"|"+w[5])
|
24 |
+
s=self.conllu.readline()
|
25 |
+
lid={}
|
26 |
+
for i,l in enumerate(sorted(label)):
|
27 |
+
lid[l],lid["B-"+l],lid["I-"+l]=i*3,i*3+1,i*3+2
|
28 |
+
self.label2id=lid
|
29 |
+
def __call__(*args):
|
30 |
+
lid={l:i for i,l in enumerate(sorted(set(sum([list(t.label2id) for t in args],[]))))}
|
31 |
+
for t in args:
|
32 |
+
t.label2id=lid
|
33 |
+
return lid
|
34 |
+
def __del__(self):
|
35 |
+
self.conllu.close()
|
36 |
+
__len__=lambda self:len(self.seeks)-1
|
37 |
+
def __getitem__(self,i):
|
38 |
+
self.conllu.seek(self.seeks[i])
|
39 |
+
form,upos=[],[]
|
40 |
+
while self.conllu.tell()<self.seeks[i+1]:
|
41 |
+
w=self.conllu.readline().split("\t")
|
42 |
+
if len(w)==10:
|
43 |
+
form.append(w[1])
|
44 |
+
if w[0].isdecimal():
|
45 |
+
upos.append(w[3] if w[5]=="_" else w[3]+"|"+w[5])
|
46 |
+
v=self.tokenizer(form,add_special_tokens=False)
|
47 |
+
i,u=[],[]
|
48 |
+
for j,(x,y) in enumerate(zip(v["input_ids"],upos)):
|
49 |
+
if x!=[]:
|
50 |
+
i+=x
|
51 |
+
u+=[y] if len(x)==1 else ["B-"+y]+["I-"+y]*(len(x)-1)
|
52 |
+
if len(i)<self.tokenizer.model_max_length-3:
|
53 |
+
ids=i
|
54 |
+
upos=u
|
55 |
+
else:
|
56 |
+
ids=i[0:self.tokenizer.model_max_length-2]
|
57 |
+
upos=u[0:self.tokenizer.model_max_length-2]
|
58 |
+
return {"input_ids":ids,"labels":[self.label2id[t] for t in upos]}
|
59 |
+
|
60 |
+
tkz=AutoTokenizer.from_pretrained(src,cls_token="<s>",sep_token="<s>",mask_token="<unk>",pad_token="</s>",model_max_length=1024)
|
61 |
+
trainDS=UPOSFileDataset("ja_gsd_modern.conllu",tkz)
|
62 |
+
lid=trainDS.label2id
|
63 |
+
cfg=AutoConfig.from_pretrained(src,num_labels=len(lid),label2id=lid,id2label={i:l for l,i in lid.items()},ignore_mismatched_sizes=True)
|
64 |
+
arg=TrainingArguments(num_train_epochs=3,per_device_train_batch_size=16,output_dir=tgt,overwrite_output_dir=True,save_total_limit=2,learning_rate=5e-05,warmup_ratio=0.1,save_safetensors=False)
|
65 |
+
trn=Trainer(args=arg,data_collator=DataCollatorForTokenClassification(tkz),model=GPT2ForTokenClassification.from_pretrained(src,config=cfg,ignore_mismatched_sizes=True),train_dataset=trainDS)
|
66 |
+
trn.train()
|
67 |
+
trn.save_model(tgt)
|
68 |
+
tkz.save_pretrained(tgt)
|
mecab-jumandic-utf8.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bbde3e53407df0e50122816df8f936ceb006580c17026e21037518ed542e4cbc
|
3 |
+
size 33196897
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7209e84b760fd1c174490caebdd8d4da3086c8d522c3efff4814dda70eba8873
|
3 |
+
size 441907170
|
special_tokens_map.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "<s>",
|
3 |
+
"eos_token": {
|
4 |
+
"content": "</s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false
|
9 |
+
},
|
10 |
+
"mask_token": {
|
11 |
+
"content": "<unk>",
|
12 |
+
"lstrip": false,
|
13 |
+
"normalized": false,
|
14 |
+
"rstrip": false,
|
15 |
+
"single_word": false
|
16 |
+
},
|
17 |
+
"pad_token": {
|
18 |
+
"content": "</s>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"sep_token": "<s>",
|
25 |
+
"unk_token": {
|
26 |
+
"content": "<unk>",
|
27 |
+
"lstrip": false,
|
28 |
+
"normalized": false,
|
29 |
+
"rstrip": false,
|
30 |
+
"single_word": false
|
31 |
+
}
|
32 |
+
}
|
spiece.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33ce6c35a3f5a3028975f75c05eeda077e6ac96e49894778b19296280566132d
|
3 |
+
size 812016
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<unk>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<s>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
}
|
27 |
+
},
|
28 |
+
"additional_special_tokens": [],
|
29 |
+
"auto_map": {"AutoTokenizer":[null,"juman.JumanReformerTokenizerFast"]},
|
30 |
+
"clean_up_tokenization_spaces": true,
|
31 |
+
"cls_token": "<s>",
|
32 |
+
"eos_token": "</s>",
|
33 |
+
"mask_token": "<unk>",
|
34 |
+
"model_max_length": 1024,
|
35 |
+
"pad_token": "</s>",
|
36 |
+
"sep_token": "<s>",
|
37 |
+
"sp_model_kwargs": {},
|
38 |
+
"tokenizer_class": "JumanReformerTokenizerFast",
|
39 |
+
"unk_token": "<unk>"
|
40 |
+
}
|
upos.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import TokenClassificationPipeline
|
2 |
+
|
3 |
+
class BellmanFordTokenClassificationPipeline(TokenClassificationPipeline):
|
4 |
+
def __init__(self,**kwargs):
|
5 |
+
import numpy
|
6 |
+
super().__init__(**kwargs)
|
7 |
+
x=self.model.config.label2id
|
8 |
+
y=[k for k in x if not k.startswith("I-")]
|
9 |
+
self.transition=numpy.full((len(x),len(x)),numpy.nan)
|
10 |
+
for k,v in x.items():
|
11 |
+
for j in ["I-"+k[2:]] if k.startswith("B-") else [k]+y if k.startswith("I-") else y:
|
12 |
+
self.transition[v,x[j]]=0
|
13 |
+
def check_model_type(self,supported_models):
|
14 |
+
pass
|
15 |
+
def postprocess(self,model_outputs,**kwargs):
|
16 |
+
import numpy
|
17 |
+
if "logits" not in model_outputs:
|
18 |
+
return self.postprocess(model_outputs[0],**kwargs)
|
19 |
+
m=model_outputs["logits"][0].numpy()
|
20 |
+
e=numpy.exp(m-numpy.max(m,axis=-1,keepdims=True))
|
21 |
+
z=e/e.sum(axis=-1,keepdims=True)
|
22 |
+
for i in range(m.shape[0]-1,0,-1):
|
23 |
+
m[i-1]+=numpy.nanmax(m[i]+self.transition,axis=1)
|
24 |
+
k=[numpy.nanargmax(m[0]+self.transition[0])]
|
25 |
+
for i in range(1,m.shape[0]):
|
26 |
+
k.append(numpy.nanargmax(m[i]+self.transition[k[-1]]))
|
27 |
+
w=[{"entity":self.model.config.id2label[j],"start":s,"end":e,"score":z[i,j]} for i,((s,e),j) in enumerate(zip(model_outputs["offset_mapping"][0].tolist(),k)) if s<e]
|
28 |
+
if "aggregation_strategy" in kwargs and kwargs["aggregation_strategy"]!="none":
|
29 |
+
for i,t in reversed(list(enumerate(w))):
|
30 |
+
p=t.pop("entity")
|
31 |
+
if p.startswith("I-"):
|
32 |
+
w[i-1]["score"]=min(w[i-1]["score"],t["score"])
|
33 |
+
w[i-1]["end"]=w.pop(i)["end"]
|
34 |
+
elif p.startswith("B-"):
|
35 |
+
t["entity_group"]=p[2:]
|
36 |
+
else:
|
37 |
+
t["entity_group"]=p
|
38 |
+
for t in w:
|
39 |
+
t["text"]=model_outputs["sentence"][t["start"]:t["end"]]
|
40 |
+
return w
|
41 |
+
|