KoichiYasuoka commited on
Commit
9235968
·
1 Parent(s): ecb3b5a

initial release

Browse files
README.md ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - "ja"
4
+ tags:
5
+ - "japanese"
6
+ - "pos"
7
+ - "dependency-parsing"
8
+ base_model: KoichiYasuoka/gpt2-xlarge-japanese-juman-upos
9
+ datasets:
10
+ - "universal_dependencies"
11
+ license: "cc-by-sa-4.0"
12
+ pipeline_tag: "token-classification"
13
+ widget:
14
+ - text: "全学年にわたって小学校の国語の教科書に挿し絵が用いられている"
15
+ ---
16
+
17
+ # gpt2-xlarge-japanese-juman-ud-causal
18
+
19
+ ## Model Description
20
+
21
+ This is a GPT-2 model pretrained for POS-tagging and dependency-parsing, derived from [gpt2-xlarge-japanese-juman-upos](https://huggingface.co/KoichiYasuoka/gpt2-xlarge-japanese-juman-upos) and [UD_Japanese-GSDLUW](https://github.com/UniversalDependencies/UD_Japanese-GSDLUW).
22
+
23
+ ## How to Use
24
+
25
+ ```
26
+ from transformers import pipeline
27
+ nlp=pipeline("universal-dependencies","KoichiYasuoka/gpt2-xlarge-japanese-juman-ud-causal",trust_remote_code=True)
28
+ print(nlp("全学年にわたって小学校の国語の教科書に挿し絵が用いられている"))
29
+ ```
30
+
31
+ [fugashi](https://pypi.org/project/fugashi) is required.
32
+
config.json ADDED
@@ -0,0 +1,376 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation_function": "gelu_new",
3
+ "architectures": [
4
+ "GPT2ForTokenClassification"
5
+ ],
6
+ "attn_pdrop": 0.1,
7
+ "bos_token_id": 1,
8
+ "custom_pipelines": {
9
+ "upos": {
10
+ "impl": "ud.BellmanFordTokenClassificationPipeline",
11
+ "pt": "AutoModelForTokenClassification"
12
+ },
13
+ "universal-dependencies": {
14
+ "impl": "ud.UniversalDependenciesCausalPipeline",
15
+ "pt": "AutoModelForTokenClassification"
16
+ }
17
+ },
18
+ "embd_pdrop": 0.1,
19
+ "eos_token_id": 2,
20
+ "id2label": {
21
+ "0": "ADJ",
22
+ "1": "ADJ|l-acl",
23
+ "2": "ADJ|l-advcl",
24
+ "3": "ADJ|l-amod",
25
+ "4": "ADJ|l-ccomp",
26
+ "5": "ADJ|l-csubj",
27
+ "6": "ADJ|l-csubj:outer",
28
+ "7": "ADJ|l-nmod",
29
+ "8": "ADJ|l-nsubj",
30
+ "9": "ADJ|l-obj",
31
+ "10": "ADJ|l-obl",
32
+ "11": "ADJ|r-acl",
33
+ "12": "ADJ|r-amod",
34
+ "13": "ADJ|r-dep",
35
+ "14": "ADJ|root",
36
+ "15": "ADP",
37
+ "16": "ADP|l-case",
38
+ "17": "ADP|r-case",
39
+ "18": "ADP|r-fixed",
40
+ "19": "ADV",
41
+ "20": "ADV|l-advcl",
42
+ "21": "ADV|l-advmod",
43
+ "22": "ADV|l-obj",
44
+ "23": "ADV|r-dep",
45
+ "24": "ADV|root",
46
+ "25": "AUX",
47
+ "26": "AUX|Polarity=Neg",
48
+ "27": "AUX|Polarity=Neg|r-aux",
49
+ "28": "AUX|Polarity=Neg|r-fixed",
50
+ "29": "AUX|r-aux",
51
+ "30": "AUX|r-cop",
52
+ "31": "AUX|r-fixed",
53
+ "32": "AUX|root",
54
+ "33": "B-ADJ",
55
+ "34": "B-ADP",
56
+ "35": "B-ADV",
57
+ "36": "B-AUX",
58
+ "37": "B-AUX|Polarity=Neg",
59
+ "38": "B-CCONJ",
60
+ "39": "B-DET",
61
+ "40": "B-INTJ",
62
+ "41": "B-NOUN",
63
+ "42": "B-NOUN|Polarity=Neg",
64
+ "43": "B-NUM",
65
+ "44": "B-PART",
66
+ "45": "B-PRON",
67
+ "46": "B-PROPN",
68
+ "47": "B-PUNCT",
69
+ "48": "B-SCONJ",
70
+ "49": "B-SYM",
71
+ "50": "B-VERB",
72
+ "51": "B-X",
73
+ "52": "CCONJ",
74
+ "53": "CCONJ|l-cc",
75
+ "54": "CCONJ|r-cc",
76
+ "55": "DET",
77
+ "56": "DET|l-det",
78
+ "57": "I-ADJ",
79
+ "58": "I-ADP",
80
+ "59": "I-ADV",
81
+ "60": "I-AUX",
82
+ "61": "I-AUX|Polarity=Neg",
83
+ "62": "I-CCONJ",
84
+ "63": "I-DET",
85
+ "64": "I-INTJ",
86
+ "65": "I-NOUN",
87
+ "66": "I-NOUN|Polarity=Neg",
88
+ "67": "I-NUM",
89
+ "68": "I-PART",
90
+ "69": "I-PRON",
91
+ "70": "I-PROPN",
92
+ "71": "I-PUNCT",
93
+ "72": "I-SCONJ",
94
+ "73": "I-SYM",
95
+ "74": "I-VERB",
96
+ "75": "I-X",
97
+ "76": "INTJ",
98
+ "77": "INTJ|l-discourse",
99
+ "78": "INTJ|r-discourse",
100
+ "79": "INTJ|root",
101
+ "80": "NOUN",
102
+ "81": "NOUN|Polarity=Neg",
103
+ "82": "NOUN|Polarity=Neg|l-obl",
104
+ "83": "NOUN|Polarity=Neg|root",
105
+ "84": "NOUN|l-acl",
106
+ "85": "NOUN|l-advcl",
107
+ "86": "NOUN|l-ccomp",
108
+ "87": "NOUN|l-compound",
109
+ "88": "NOUN|l-csubj",
110
+ "89": "NOUN|l-csubj:outer",
111
+ "90": "NOUN|l-nmod",
112
+ "91": "NOUN|l-nsubj",
113
+ "92": "NOUN|l-nsubj:outer",
114
+ "93": "NOUN|l-obj",
115
+ "94": "NOUN|l-obl",
116
+ "95": "NOUN|r-compound",
117
+ "96": "NOUN|r-nmod",
118
+ "97": "NOUN|r-nsubj",
119
+ "98": "NOUN|root",
120
+ "99": "NUM",
121
+ "100": "NUM|l-advcl",
122
+ "101": "NUM|l-compound",
123
+ "102": "NUM|l-nmod",
124
+ "103": "NUM|l-nsubj",
125
+ "104": "NUM|l-nsubj:outer",
126
+ "105": "NUM|l-nummod",
127
+ "106": "NUM|l-obj",
128
+ "107": "NUM|l-obl",
129
+ "108": "NUM|r-compound",
130
+ "109": "NUM|root",
131
+ "110": "PART",
132
+ "111": "PART|l-mark",
133
+ "112": "PART|r-mark",
134
+ "113": "PRON",
135
+ "114": "PRON|l-acl",
136
+ "115": "PRON|l-advcl",
137
+ "116": "PRON|l-nmod",
138
+ "117": "PRON|l-nsubj",
139
+ "118": "PRON|l-nsubj:outer",
140
+ "119": "PRON|l-obj",
141
+ "120": "PRON|l-obl",
142
+ "121": "PRON|root",
143
+ "122": "PROPN",
144
+ "123": "PROPN|l-acl",
145
+ "124": "PROPN|l-advcl",
146
+ "125": "PROPN|l-compound",
147
+ "126": "PROPN|l-nmod",
148
+ "127": "PROPN|l-nsubj",
149
+ "128": "PROPN|l-nsubj:outer",
150
+ "129": "PROPN|l-obj",
151
+ "130": "PROPN|l-obl",
152
+ "131": "PROPN|r-compound",
153
+ "132": "PROPN|r-nmod",
154
+ "133": "PROPN|root",
155
+ "134": "PUNCT",
156
+ "135": "PUNCT|l-punct",
157
+ "136": "PUNCT|r-punct",
158
+ "137": "SCONJ",
159
+ "138": "SCONJ|l-dep",
160
+ "139": "SCONJ|r-fixed",
161
+ "140": "SCONJ|r-mark",
162
+ "141": "SYM",
163
+ "142": "SYM|l-compound",
164
+ "143": "SYM|l-dep",
165
+ "144": "SYM|l-nmod",
166
+ "145": "SYM|l-obl",
167
+ "146": "SYM|r-compound",
168
+ "147": "SYM|r-dep",
169
+ "148": "VERB",
170
+ "149": "VERB|l-acl",
171
+ "150": "VERB|l-advcl",
172
+ "151": "VERB|l-ccomp",
173
+ "152": "VERB|l-compound",
174
+ "153": "VERB|l-csubj",
175
+ "154": "VERB|l-csubj:outer",
176
+ "155": "VERB|l-nmod",
177
+ "156": "VERB|l-obj",
178
+ "157": "VERB|l-obl",
179
+ "158": "VERB|r-acl",
180
+ "159": "VERB|r-advcl",
181
+ "160": "VERB|r-compound",
182
+ "161": "VERB|root",
183
+ "162": "X",
184
+ "163": "X|l-nmod",
185
+ "164": "X|r-dep"
186
+ },
187
+ "initializer_range": 0.02,
188
+ "label2id": {
189
+ "ADJ": 0,
190
+ "ADJ|l-acl": 1,
191
+ "ADJ|l-advcl": 2,
192
+ "ADJ|l-amod": 3,
193
+ "ADJ|l-ccomp": 4,
194
+ "ADJ|l-csubj": 5,
195
+ "ADJ|l-csubj:outer": 6,
196
+ "ADJ|l-nmod": 7,
197
+ "ADJ|l-nsubj": 8,
198
+ "ADJ|l-obj": 9,
199
+ "ADJ|l-obl": 10,
200
+ "ADJ|r-acl": 11,
201
+ "ADJ|r-amod": 12,
202
+ "ADJ|r-dep": 13,
203
+ "ADJ|root": 14,
204
+ "ADP": 15,
205
+ "ADP|l-case": 16,
206
+ "ADP|r-case": 17,
207
+ "ADP|r-fixed": 18,
208
+ "ADV": 19,
209
+ "ADV|l-advcl": 20,
210
+ "ADV|l-advmod": 21,
211
+ "ADV|l-obj": 22,
212
+ "ADV|r-dep": 23,
213
+ "ADV|root": 24,
214
+ "AUX": 25,
215
+ "AUX|Polarity=Neg": 26,
216
+ "AUX|Polarity=Neg|r-aux": 27,
217
+ "AUX|Polarity=Neg|r-fixed": 28,
218
+ "AUX|r-aux": 29,
219
+ "AUX|r-cop": 30,
220
+ "AUX|r-fixed": 31,
221
+ "AUX|root": 32,
222
+ "B-ADJ": 33,
223
+ "B-ADP": 34,
224
+ "B-ADV": 35,
225
+ "B-AUX": 36,
226
+ "B-AUX|Polarity=Neg": 37,
227
+ "B-CCONJ": 38,
228
+ "B-DET": 39,
229
+ "B-INTJ": 40,
230
+ "B-NOUN": 41,
231
+ "B-NOUN|Polarity=Neg": 42,
232
+ "B-NUM": 43,
233
+ "B-PART": 44,
234
+ "B-PRON": 45,
235
+ "B-PROPN": 46,
236
+ "B-PUNCT": 47,
237
+ "B-SCONJ": 48,
238
+ "B-SYM": 49,
239
+ "B-VERB": 50,
240
+ "B-X": 51,
241
+ "CCONJ": 52,
242
+ "CCONJ|l-cc": 53,
243
+ "CCONJ|r-cc": 54,
244
+ "DET": 55,
245
+ "DET|l-det": 56,
246
+ "I-ADJ": 57,
247
+ "I-ADP": 58,
248
+ "I-ADV": 59,
249
+ "I-AUX": 60,
250
+ "I-AUX|Polarity=Neg": 61,
251
+ "I-CCONJ": 62,
252
+ "I-DET": 63,
253
+ "I-INTJ": 64,
254
+ "I-NOUN": 65,
255
+ "I-NOUN|Polarity=Neg": 66,
256
+ "I-NUM": 67,
257
+ "I-PART": 68,
258
+ "I-PRON": 69,
259
+ "I-PROPN": 70,
260
+ "I-PUNCT": 71,
261
+ "I-SCONJ": 72,
262
+ "I-SYM": 73,
263
+ "I-VERB": 74,
264
+ "I-X": 75,
265
+ "INTJ": 76,
266
+ "INTJ|l-discourse": 77,
267
+ "INTJ|r-discourse": 78,
268
+ "INTJ|root": 79,
269
+ "NOUN": 80,
270
+ "NOUN|Polarity=Neg": 81,
271
+ "NOUN|Polarity=Neg|l-obl": 82,
272
+ "NOUN|Polarity=Neg|root": 83,
273
+ "NOUN|l-acl": 84,
274
+ "NOUN|l-advcl": 85,
275
+ "NOUN|l-ccomp": 86,
276
+ "NOUN|l-compound": 87,
277
+ "NOUN|l-csubj": 88,
278
+ "NOUN|l-csubj:outer": 89,
279
+ "NOUN|l-nmod": 90,
280
+ "NOUN|l-nsubj": 91,
281
+ "NOUN|l-nsubj:outer": 92,
282
+ "NOUN|l-obj": 93,
283
+ "NOUN|l-obl": 94,
284
+ "NOUN|r-compound": 95,
285
+ "NOUN|r-nmod": 96,
286
+ "NOUN|r-nsubj": 97,
287
+ "NOUN|root": 98,
288
+ "NUM": 99,
289
+ "NUM|l-advcl": 100,
290
+ "NUM|l-compound": 101,
291
+ "NUM|l-nmod": 102,
292
+ "NUM|l-nsubj": 103,
293
+ "NUM|l-nsubj:outer": 104,
294
+ "NUM|l-nummod": 105,
295
+ "NUM|l-obj": 106,
296
+ "NUM|l-obl": 107,
297
+ "NUM|r-compound": 108,
298
+ "NUM|root": 109,
299
+ "PART": 110,
300
+ "PART|l-mark": 111,
301
+ "PART|r-mark": 112,
302
+ "PRON": 113,
303
+ "PRON|l-acl": 114,
304
+ "PRON|l-advcl": 115,
305
+ "PRON|l-nmod": 116,
306
+ "PRON|l-nsubj": 117,
307
+ "PRON|l-nsubj:outer": 118,
308
+ "PRON|l-obj": 119,
309
+ "PRON|l-obl": 120,
310
+ "PRON|root": 121,
311
+ "PROPN": 122,
312
+ "PROPN|l-acl": 123,
313
+ "PROPN|l-advcl": 124,
314
+ "PROPN|l-compound": 125,
315
+ "PROPN|l-nmod": 126,
316
+ "PROPN|l-nsubj": 127,
317
+ "PROPN|l-nsubj:outer": 128,
318
+ "PROPN|l-obj": 129,
319
+ "PROPN|l-obl": 130,
320
+ "PROPN|r-compound": 131,
321
+ "PROPN|r-nmod": 132,
322
+ "PROPN|root": 133,
323
+ "PUNCT": 134,
324
+ "PUNCT|l-punct": 135,
325
+ "PUNCT|r-punct": 136,
326
+ "SCONJ": 137,
327
+ "SCONJ|l-dep": 138,
328
+ "SCONJ|r-fixed": 139,
329
+ "SCONJ|r-mark": 140,
330
+ "SYM": 141,
331
+ "SYM|l-compound": 142,
332
+ "SYM|l-dep": 143,
333
+ "SYM|l-nmod": 144,
334
+ "SYM|l-obl": 145,
335
+ "SYM|r-compound": 146,
336
+ "SYM|r-dep": 147,
337
+ "VERB": 148,
338
+ "VERB|l-acl": 149,
339
+ "VERB|l-advcl": 150,
340
+ "VERB|l-ccomp": 151,
341
+ "VERB|l-compound": 152,
342
+ "VERB|l-csubj": 153,
343
+ "VERB|l-csubj:outer": 154,
344
+ "VERB|l-nmod": 155,
345
+ "VERB|l-obj": 156,
346
+ "VERB|l-obl": 157,
347
+ "VERB|r-acl": 158,
348
+ "VERB|r-advcl": 159,
349
+ "VERB|r-compound": 160,
350
+ "VERB|root": 161,
351
+ "X": 162,
352
+ "X|l-nmod": 163,
353
+ "X|r-dep": 164
354
+ },
355
+ "layer_norm_epsilon": 1e-05,
356
+ "model_type": "gpt2",
357
+ "n_embd": 1600,
358
+ "n_head": 20,
359
+ "n_inner": null,
360
+ "n_layer": 48,
361
+ "n_positions": 1024,
362
+ "reorder_and_upcast_attn": false,
363
+ "resid_pdrop": 0.1,
364
+ "scale_attn_by_inverse_layer_idx": false,
365
+ "scale_attn_weights": true,
366
+ "summary_activation": null,
367
+ "summary_first_dropout": 0.1,
368
+ "summary_proj_to_labels": true,
369
+ "summary_type": "cls_index",
370
+ "summary_use_proj": true,
371
+ "tokenizer_class": "JumanPreTrainedTokenizerFast",
372
+ "torch_dtype": "float32",
373
+ "transformers_version": "4.42.4",
374
+ "use_cache": true,
375
+ "vocab_size": 50000
376
+ }
juman.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from transformers import PreTrainedTokenizerFast
3
+ from transformers.models.bert_japanese.tokenization_bert_japanese import MecabTokenizer
4
+ try:
5
+ from transformers.utils import cached_file
6
+ except:
7
+ from transformers.file_utils import cached_path,hf_bucket_url
8
+ cached_file=lambda x,y:os.path.join(x,y) if os.path.isdir(x) else cached_path(hf_bucket_url(x,y))
9
+
10
+ class MecabPreTokenizer(MecabTokenizer):
11
+ def mecab_split(self,i,normalized_string):
12
+ t=str(normalized_string)
13
+ z=[]
14
+ e=0
15
+ for c in self.tokenize(t):
16
+ s=t.find(c,e)
17
+ e=e if s<0 else s+len(c)
18
+ z.append((0,0) if s<0 else (s,e))
19
+ return [normalized_string[s:e] for s,e in z if e>0]
20
+ def pre_tokenize(self,pretok):
21
+ pretok.split(self.mecab_split)
22
+
23
+ class JumanPreTrainedTokenizerFast(PreTrainedTokenizerFast):
24
+ def __init__(self,**kwargs):
25
+ from tokenizers.pre_tokenizers import PreTokenizer,Whitespace,Sequence
26
+ super().__init__(**kwargs)
27
+ d,r="/var/lib/mecab/dic/juman-utf8","/etc/mecabrc"
28
+ if not (os.path.isdir(d) and os.path.isfile(r)):
29
+ import zipfile
30
+ import tempfile
31
+ self.dicdir=tempfile.TemporaryDirectory()
32
+ d=self.dicdir.name
33
+ with zipfile.ZipFile(cached_file(self.name_or_path,"mecab-jumandic-utf8.zip")) as z:
34
+ z.extractall(d)
35
+ r=os.path.join(d,"mecabrc")
36
+ with open(r,"w",encoding="utf-8") as w:
37
+ print("dicdir =",d,file=w)
38
+ self.custom_pre_tokenizer=Sequence([PreTokenizer.custom(MecabPreTokenizer(mecab_dic=None,mecab_option="-d "+d+" -r "+r)),Whitespace()])
39
+ self._tokenizer.pre_tokenizer=self.custom_pre_tokenizer
40
+ def save_pretrained(self,save_directory,**kwargs):
41
+ import shutil
42
+ from tokenizers.pre_tokenizers import Whitespace
43
+ self._auto_map={"AutoTokenizer":[None,"juman.JumanPreTrainedTokenizerFast"]}
44
+ self._tokenizer.pre_tokenizer=Whitespace()
45
+ super().save_pretrained(save_directory,**kwargs)
46
+ self._tokenizer.pre_tokenizer=self.custom_pre_tokenizer
47
+ shutil.copy(os.path.abspath(__file__),os.path.join(save_directory,"juman.py"))
48
+ shutil.copy(cached_file(self.name_or_path,"mecab-jumandic-utf8.zip"),os.path.join(save_directory,"mecab-jumandic-utf8.zip"))
49
+
maker.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #! /usr/bin/python3
2
+ src="KoichiYasuoka/gpt2-xlarge-japanese-juman-upos"
3
+ tgt="KoichiYasuoka/gpt2-xlarge-japanese-juman-ud-causal"
4
+ url="https://github.com/UniversalDependencies/UD_Japanese-GSDLUW"
5
+ import os
6
+ d=os.path.basename(url)
7
+ os.system("test -d "+d+" || git clone --depth=1 "+url)
8
+ os.system("for F in train dev test ; do cp "+d+"/*-$F.conllu $F.conllu ; done")
9
+ class UDCausalDataset(object):
10
+ def __init__(self,conllu,tokenizer,embeddings=None):
11
+ self.conllu=open(conllu,"r",encoding="utf-8")
12
+ self.tokenizer=tokenizer
13
+ self.embeddings=embeddings
14
+ self.max_tokens=3
15
+ self.seeks=[(0,0)]
16
+ label=set(["SYM"])
17
+ dep=set()
18
+ s=self.conllu.readline()
19
+ while s!="":
20
+ if s=="\n":
21
+ self.seeks.append((self.conllu.tell(),0))
22
+ else:
23
+ w=s.split("\t")
24
+ if len(w)==10:
25
+ if w[0].isdecimal():
26
+ p=w[3] if w[5]=="_" else w[3]+"|"+w[5]
27
+ label.add(p)
28
+ dep.add(p+("|" if w[6]=="0" else "|l-" if int(w[0])<int(w[6]) else "|r-")+w[7])
29
+ self.seeks.append((self.seeks[-1][0],int(w[0])))
30
+ self.max_tokens=max(self.max_tokens,int(w[0])*2+1)
31
+ s=self.conllu.readline()
32
+ lid={}
33
+ for i,l in enumerate(sorted(label)):
34
+ lid[l],lid["B-"+l],lid["I-"+l]=i*3,i*3+1,i*3+2
35
+ for i,d in enumerate(sorted(dep),len(lid)):
36
+ lid[d]=i
37
+ self.label2id=lid
38
+ def __call__(*args):
39
+ lid={l:i for i,l in enumerate(sorted(set(sum([list(t.label2id) for t in args],[]))))}
40
+ for t in args:
41
+ t.label2id=lid
42
+ return lid
43
+ def __del__(self):
44
+ self.conllu.close()
45
+ __len__=lambda self:len(self.seeks)-1
46
+ def __getitem__(self,i):
47
+ s,t=self.seeks[i]
48
+ self.conllu.seek(s)
49
+ form,upos,deps,w=[],[],[],[""]
50
+ while w[0]!="\n":
51
+ w=self.conllu.readline().split("\t")
52
+ if len(w)==10:
53
+ form.append(w[1])
54
+ if w[0].isdecimal():
55
+ upos.append(w[3] if w[5]=="_" else w[3]+"|"+w[5])
56
+ deps.append((int(w[6]),w[7]))
57
+ v=self.tokenizer(form,add_special_tokens=False)
58
+ if t==0:
59
+ i,u=[],[]
60
+ for j,(x,y) in enumerate(zip(v["input_ids"],upos)):
61
+ if x!=[]:
62
+ i+=x
63
+ u+=[y] if len(x)==1 else ["B-"+y]+["I-"+y]*(len(x)-1)
64
+ emb=self.embeddings
65
+ pad=self.tokenizer.pad_token_id
66
+ else:
67
+ import torch
68
+ m=[]
69
+ for x in v["input_ids"]:
70
+ if x==[]:
71
+ m.append(self.embeddings[self.tokenizer.unk_token_id,:])
72
+ else:
73
+ m.append(self.embeddings[x,:].sum(axis=0))
74
+ m.append(self.embeddings[self.tokenizer.sep_token_id,:])
75
+ m.append(self.embeddings[self.tokenizer.pad_token_id,:])
76
+ emb=torch.stack(m)
77
+ i,u=list(range(len(upos)+1)),upos+["SYM"]
78
+ i.append(t-1)
79
+ k,d=deps[t-1]
80
+ u.append(upos[t-1]+"|"+d if k==0 else upos[t-1])
81
+ for j in range(t,len(upos)):
82
+ i.append(j)
83
+ a,b=deps[j]
84
+ u.append(upos[j]+"|r-"+b if a==t else upos[t-1]+"|l-"+d if j+1==k else upos[j])
85
+ pad=-1
86
+ j=self.max_tokens-len(i)
87
+ if j>0:
88
+ ids=i+[pad]*j
89
+ upos=u+["SYM"]*j
90
+ else:
91
+ ids=i[0:self.max_tokens]
92
+ upos=u[0:self.max_tokens]
93
+ return {"inputs_embeds":emb[ids,:],"labels":[self.label2id[p] for p in upos]}
94
+ from transformers import PreTrainedTokenizerFast,AutoConfig,GPT2ForTokenClassification,DefaultDataCollator,TrainingArguments,Trainer
95
+ tkz=PreTrainedTokenizerFast.from_pretrained(src)
96
+ trainDS=UDCausalDataset("train.conllu",tkz)
97
+ devDS=UDCausalDataset("dev.conllu",tkz)
98
+ testDS=UDCausalDataset("test.conllu",tkz)
99
+ lid=trainDS(devDS,testDS)
100
+ cfg=AutoConfig.from_pretrained(src,num_labels=len(lid),label2id=lid,id2label={i:l for l,i in lid.items()},ignore_mismatched_sizes=True)
101
+ mdl=GPT2ForTokenClassification.from_pretrained(src,config=cfg,ignore_mismatched_sizes=True)
102
+ trainDS.embeddings=mdl.get_input_embeddings().weight
103
+ trainDS.max_tokens=min(trainDS.max_tokens,cfg.max_position_embeddings)
104
+ arg=TrainingArguments(num_train_epochs=3,per_device_train_batch_size=8,dataloader_pin_memory=False,output_dir=tgt,overwrite_output_dir=True,save_total_limit=2,learning_rate=5e-05,warmup_ratio=0.1,save_safetensors=False)
105
+ trn=Trainer(args=arg,data_collator=DefaultDataCollator(),model=mdl,train_dataset=trainDS)
106
+ trn.train()
107
+ trn.save_model(tgt)
108
+ tkz.save_pretrained(tgt)
mecab-jumandic-utf8.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bbde3e53407df0e50122816df8f936ceb006580c17026e21037518ed542e4cbc
3
+ size 33196897
pytorch_model-00001-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1e91b32708f55f9130527edb80239eb9a502e4c17b7455e8fd01e15c8b9fdbd0
3
+ size 4999326494
pytorch_model-00002-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49160062af89276e74c4179f798ec8db82962e34b0fcf37cf7d966843a09760b
3
+ size 1230730516
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,589 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 6229856660
4
+ },
5
+ "weight_map": {
6
+ "classifier.bias": "pytorch_model-00002-of-00002.bin",
7
+ "classifier.weight": "pytorch_model-00002-of-00002.bin",
8
+ "transformer.h.0.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
9
+ "transformer.h.0.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
10
+ "transformer.h.0.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
11
+ "transformer.h.0.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
12
+ "transformer.h.0.ln_1.bias": "pytorch_model-00001-of-00002.bin",
13
+ "transformer.h.0.ln_1.weight": "pytorch_model-00001-of-00002.bin",
14
+ "transformer.h.0.ln_2.bias": "pytorch_model-00001-of-00002.bin",
15
+ "transformer.h.0.ln_2.weight": "pytorch_model-00001-of-00002.bin",
16
+ "transformer.h.0.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
17
+ "transformer.h.0.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
18
+ "transformer.h.0.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
19
+ "transformer.h.0.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
20
+ "transformer.h.1.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
21
+ "transformer.h.1.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
22
+ "transformer.h.1.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
23
+ "transformer.h.1.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
24
+ "transformer.h.1.ln_1.bias": "pytorch_model-00001-of-00002.bin",
25
+ "transformer.h.1.ln_1.weight": "pytorch_model-00001-of-00002.bin",
26
+ "transformer.h.1.ln_2.bias": "pytorch_model-00001-of-00002.bin",
27
+ "transformer.h.1.ln_2.weight": "pytorch_model-00001-of-00002.bin",
28
+ "transformer.h.1.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
29
+ "transformer.h.1.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
30
+ "transformer.h.1.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
31
+ "transformer.h.1.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
32
+ "transformer.h.10.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
33
+ "transformer.h.10.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
34
+ "transformer.h.10.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
35
+ "transformer.h.10.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
36
+ "transformer.h.10.ln_1.bias": "pytorch_model-00001-of-00002.bin",
37
+ "transformer.h.10.ln_1.weight": "pytorch_model-00001-of-00002.bin",
38
+ "transformer.h.10.ln_2.bias": "pytorch_model-00001-of-00002.bin",
39
+ "transformer.h.10.ln_2.weight": "pytorch_model-00001-of-00002.bin",
40
+ "transformer.h.10.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
41
+ "transformer.h.10.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
42
+ "transformer.h.10.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
43
+ "transformer.h.10.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
44
+ "transformer.h.11.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
45
+ "transformer.h.11.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
46
+ "transformer.h.11.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
47
+ "transformer.h.11.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
48
+ "transformer.h.11.ln_1.bias": "pytorch_model-00001-of-00002.bin",
49
+ "transformer.h.11.ln_1.weight": "pytorch_model-00001-of-00002.bin",
50
+ "transformer.h.11.ln_2.bias": "pytorch_model-00001-of-00002.bin",
51
+ "transformer.h.11.ln_2.weight": "pytorch_model-00001-of-00002.bin",
52
+ "transformer.h.11.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
53
+ "transformer.h.11.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
54
+ "transformer.h.11.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
55
+ "transformer.h.11.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
56
+ "transformer.h.12.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
57
+ "transformer.h.12.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
58
+ "transformer.h.12.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
59
+ "transformer.h.12.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
60
+ "transformer.h.12.ln_1.bias": "pytorch_model-00001-of-00002.bin",
61
+ "transformer.h.12.ln_1.weight": "pytorch_model-00001-of-00002.bin",
62
+ "transformer.h.12.ln_2.bias": "pytorch_model-00001-of-00002.bin",
63
+ "transformer.h.12.ln_2.weight": "pytorch_model-00001-of-00002.bin",
64
+ "transformer.h.12.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
65
+ "transformer.h.12.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
66
+ "transformer.h.12.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
67
+ "transformer.h.12.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
68
+ "transformer.h.13.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
69
+ "transformer.h.13.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
70
+ "transformer.h.13.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
71
+ "transformer.h.13.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
72
+ "transformer.h.13.ln_1.bias": "pytorch_model-00001-of-00002.bin",
73
+ "transformer.h.13.ln_1.weight": "pytorch_model-00001-of-00002.bin",
74
+ "transformer.h.13.ln_2.bias": "pytorch_model-00001-of-00002.bin",
75
+ "transformer.h.13.ln_2.weight": "pytorch_model-00001-of-00002.bin",
76
+ "transformer.h.13.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
77
+ "transformer.h.13.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
78
+ "transformer.h.13.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
79
+ "transformer.h.13.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
80
+ "transformer.h.14.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
81
+ "transformer.h.14.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
82
+ "transformer.h.14.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
83
+ "transformer.h.14.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
84
+ "transformer.h.14.ln_1.bias": "pytorch_model-00001-of-00002.bin",
85
+ "transformer.h.14.ln_1.weight": "pytorch_model-00001-of-00002.bin",
86
+ "transformer.h.14.ln_2.bias": "pytorch_model-00001-of-00002.bin",
87
+ "transformer.h.14.ln_2.weight": "pytorch_model-00001-of-00002.bin",
88
+ "transformer.h.14.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
89
+ "transformer.h.14.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
90
+ "transformer.h.14.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
91
+ "transformer.h.14.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
92
+ "transformer.h.15.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
93
+ "transformer.h.15.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
94
+ "transformer.h.15.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
95
+ "transformer.h.15.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
96
+ "transformer.h.15.ln_1.bias": "pytorch_model-00001-of-00002.bin",
97
+ "transformer.h.15.ln_1.weight": "pytorch_model-00001-of-00002.bin",
98
+ "transformer.h.15.ln_2.bias": "pytorch_model-00001-of-00002.bin",
99
+ "transformer.h.15.ln_2.weight": "pytorch_model-00001-of-00002.bin",
100
+ "transformer.h.15.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
101
+ "transformer.h.15.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
102
+ "transformer.h.15.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
103
+ "transformer.h.15.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
104
+ "transformer.h.16.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
105
+ "transformer.h.16.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
106
+ "transformer.h.16.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
107
+ "transformer.h.16.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
108
+ "transformer.h.16.ln_1.bias": "pytorch_model-00001-of-00002.bin",
109
+ "transformer.h.16.ln_1.weight": "pytorch_model-00001-of-00002.bin",
110
+ "transformer.h.16.ln_2.bias": "pytorch_model-00001-of-00002.bin",
111
+ "transformer.h.16.ln_2.weight": "pytorch_model-00001-of-00002.bin",
112
+ "transformer.h.16.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
113
+ "transformer.h.16.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
114
+ "transformer.h.16.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
115
+ "transformer.h.16.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
116
+ "transformer.h.17.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
117
+ "transformer.h.17.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
118
+ "transformer.h.17.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
119
+ "transformer.h.17.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
120
+ "transformer.h.17.ln_1.bias": "pytorch_model-00001-of-00002.bin",
121
+ "transformer.h.17.ln_1.weight": "pytorch_model-00001-of-00002.bin",
122
+ "transformer.h.17.ln_2.bias": "pytorch_model-00001-of-00002.bin",
123
+ "transformer.h.17.ln_2.weight": "pytorch_model-00001-of-00002.bin",
124
+ "transformer.h.17.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
125
+ "transformer.h.17.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
126
+ "transformer.h.17.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
127
+ "transformer.h.17.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
128
+ "transformer.h.18.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
129
+ "transformer.h.18.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
130
+ "transformer.h.18.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
131
+ "transformer.h.18.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
132
+ "transformer.h.18.ln_1.bias": "pytorch_model-00001-of-00002.bin",
133
+ "transformer.h.18.ln_1.weight": "pytorch_model-00001-of-00002.bin",
134
+ "transformer.h.18.ln_2.bias": "pytorch_model-00001-of-00002.bin",
135
+ "transformer.h.18.ln_2.weight": "pytorch_model-00001-of-00002.bin",
136
+ "transformer.h.18.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
137
+ "transformer.h.18.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
138
+ "transformer.h.18.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
139
+ "transformer.h.18.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
140
+ "transformer.h.19.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
141
+ "transformer.h.19.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
142
+ "transformer.h.19.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
143
+ "transformer.h.19.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
144
+ "transformer.h.19.ln_1.bias": "pytorch_model-00001-of-00002.bin",
145
+ "transformer.h.19.ln_1.weight": "pytorch_model-00001-of-00002.bin",
146
+ "transformer.h.19.ln_2.bias": "pytorch_model-00001-of-00002.bin",
147
+ "transformer.h.19.ln_2.weight": "pytorch_model-00001-of-00002.bin",
148
+ "transformer.h.19.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
149
+ "transformer.h.19.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
150
+ "transformer.h.19.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
151
+ "transformer.h.19.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
152
+ "transformer.h.2.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
153
+ "transformer.h.2.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
154
+ "transformer.h.2.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
155
+ "transformer.h.2.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
156
+ "transformer.h.2.ln_1.bias": "pytorch_model-00001-of-00002.bin",
157
+ "transformer.h.2.ln_1.weight": "pytorch_model-00001-of-00002.bin",
158
+ "transformer.h.2.ln_2.bias": "pytorch_model-00001-of-00002.bin",
159
+ "transformer.h.2.ln_2.weight": "pytorch_model-00001-of-00002.bin",
160
+ "transformer.h.2.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
161
+ "transformer.h.2.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
162
+ "transformer.h.2.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
163
+ "transformer.h.2.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
164
+ "transformer.h.20.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
165
+ "transformer.h.20.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
166
+ "transformer.h.20.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
167
+ "transformer.h.20.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
168
+ "transformer.h.20.ln_1.bias": "pytorch_model-00001-of-00002.bin",
169
+ "transformer.h.20.ln_1.weight": "pytorch_model-00001-of-00002.bin",
170
+ "transformer.h.20.ln_2.bias": "pytorch_model-00001-of-00002.bin",
171
+ "transformer.h.20.ln_2.weight": "pytorch_model-00001-of-00002.bin",
172
+ "transformer.h.20.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
173
+ "transformer.h.20.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
174
+ "transformer.h.20.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
175
+ "transformer.h.20.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
176
+ "transformer.h.21.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
177
+ "transformer.h.21.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
178
+ "transformer.h.21.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
179
+ "transformer.h.21.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
180
+ "transformer.h.21.ln_1.bias": "pytorch_model-00001-of-00002.bin",
181
+ "transformer.h.21.ln_1.weight": "pytorch_model-00001-of-00002.bin",
182
+ "transformer.h.21.ln_2.bias": "pytorch_model-00001-of-00002.bin",
183
+ "transformer.h.21.ln_2.weight": "pytorch_model-00001-of-00002.bin",
184
+ "transformer.h.21.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
185
+ "transformer.h.21.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
186
+ "transformer.h.21.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
187
+ "transformer.h.21.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
188
+ "transformer.h.22.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
189
+ "transformer.h.22.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
190
+ "transformer.h.22.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
191
+ "transformer.h.22.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
192
+ "transformer.h.22.ln_1.bias": "pytorch_model-00001-of-00002.bin",
193
+ "transformer.h.22.ln_1.weight": "pytorch_model-00001-of-00002.bin",
194
+ "transformer.h.22.ln_2.bias": "pytorch_model-00001-of-00002.bin",
195
+ "transformer.h.22.ln_2.weight": "pytorch_model-00001-of-00002.bin",
196
+ "transformer.h.22.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
197
+ "transformer.h.22.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
198
+ "transformer.h.22.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
199
+ "transformer.h.22.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
200
+ "transformer.h.23.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
201
+ "transformer.h.23.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
202
+ "transformer.h.23.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
203
+ "transformer.h.23.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
204
+ "transformer.h.23.ln_1.bias": "pytorch_model-00001-of-00002.bin",
205
+ "transformer.h.23.ln_1.weight": "pytorch_model-00001-of-00002.bin",
206
+ "transformer.h.23.ln_2.bias": "pytorch_model-00001-of-00002.bin",
207
+ "transformer.h.23.ln_2.weight": "pytorch_model-00001-of-00002.bin",
208
+ "transformer.h.23.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
209
+ "transformer.h.23.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
210
+ "transformer.h.23.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
211
+ "transformer.h.23.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
212
+ "transformer.h.24.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
213
+ "transformer.h.24.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
214
+ "transformer.h.24.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
215
+ "transformer.h.24.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
216
+ "transformer.h.24.ln_1.bias": "pytorch_model-00001-of-00002.bin",
217
+ "transformer.h.24.ln_1.weight": "pytorch_model-00001-of-00002.bin",
218
+ "transformer.h.24.ln_2.bias": "pytorch_model-00001-of-00002.bin",
219
+ "transformer.h.24.ln_2.weight": "pytorch_model-00001-of-00002.bin",
220
+ "transformer.h.24.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
221
+ "transformer.h.24.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
222
+ "transformer.h.24.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
223
+ "transformer.h.24.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
224
+ "transformer.h.25.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
225
+ "transformer.h.25.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
226
+ "transformer.h.25.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
227
+ "transformer.h.25.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
228
+ "transformer.h.25.ln_1.bias": "pytorch_model-00001-of-00002.bin",
229
+ "transformer.h.25.ln_1.weight": "pytorch_model-00001-of-00002.bin",
230
+ "transformer.h.25.ln_2.bias": "pytorch_model-00001-of-00002.bin",
231
+ "transformer.h.25.ln_2.weight": "pytorch_model-00001-of-00002.bin",
232
+ "transformer.h.25.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
233
+ "transformer.h.25.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
234
+ "transformer.h.25.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
235
+ "transformer.h.25.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
236
+ "transformer.h.26.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
237
+ "transformer.h.26.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
238
+ "transformer.h.26.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
239
+ "transformer.h.26.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
240
+ "transformer.h.26.ln_1.bias": "pytorch_model-00001-of-00002.bin",
241
+ "transformer.h.26.ln_1.weight": "pytorch_model-00001-of-00002.bin",
242
+ "transformer.h.26.ln_2.bias": "pytorch_model-00001-of-00002.bin",
243
+ "transformer.h.26.ln_2.weight": "pytorch_model-00001-of-00002.bin",
244
+ "transformer.h.26.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
245
+ "transformer.h.26.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
246
+ "transformer.h.26.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
247
+ "transformer.h.26.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
248
+ "transformer.h.27.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
249
+ "transformer.h.27.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
250
+ "transformer.h.27.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
251
+ "transformer.h.27.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
252
+ "transformer.h.27.ln_1.bias": "pytorch_model-00001-of-00002.bin",
253
+ "transformer.h.27.ln_1.weight": "pytorch_model-00001-of-00002.bin",
254
+ "transformer.h.27.ln_2.bias": "pytorch_model-00001-of-00002.bin",
255
+ "transformer.h.27.ln_2.weight": "pytorch_model-00001-of-00002.bin",
256
+ "transformer.h.27.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
257
+ "transformer.h.27.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
258
+ "transformer.h.27.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
259
+ "transformer.h.27.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
260
+ "transformer.h.28.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
261
+ "transformer.h.28.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
262
+ "transformer.h.28.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
263
+ "transformer.h.28.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
264
+ "transformer.h.28.ln_1.bias": "pytorch_model-00001-of-00002.bin",
265
+ "transformer.h.28.ln_1.weight": "pytorch_model-00001-of-00002.bin",
266
+ "transformer.h.28.ln_2.bias": "pytorch_model-00001-of-00002.bin",
267
+ "transformer.h.28.ln_2.weight": "pytorch_model-00001-of-00002.bin",
268
+ "transformer.h.28.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
269
+ "transformer.h.28.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
270
+ "transformer.h.28.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
271
+ "transformer.h.28.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
272
+ "transformer.h.29.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
273
+ "transformer.h.29.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
274
+ "transformer.h.29.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
275
+ "transformer.h.29.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
276
+ "transformer.h.29.ln_1.bias": "pytorch_model-00001-of-00002.bin",
277
+ "transformer.h.29.ln_1.weight": "pytorch_model-00001-of-00002.bin",
278
+ "transformer.h.29.ln_2.bias": "pytorch_model-00001-of-00002.bin",
279
+ "transformer.h.29.ln_2.weight": "pytorch_model-00001-of-00002.bin",
280
+ "transformer.h.29.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
281
+ "transformer.h.29.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
282
+ "transformer.h.29.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
283
+ "transformer.h.29.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
284
+ "transformer.h.3.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
285
+ "transformer.h.3.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
286
+ "transformer.h.3.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
287
+ "transformer.h.3.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
288
+ "transformer.h.3.ln_1.bias": "pytorch_model-00001-of-00002.bin",
289
+ "transformer.h.3.ln_1.weight": "pytorch_model-00001-of-00002.bin",
290
+ "transformer.h.3.ln_2.bias": "pytorch_model-00001-of-00002.bin",
291
+ "transformer.h.3.ln_2.weight": "pytorch_model-00001-of-00002.bin",
292
+ "transformer.h.3.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
293
+ "transformer.h.3.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
294
+ "transformer.h.3.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
295
+ "transformer.h.3.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
296
+ "transformer.h.30.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
297
+ "transformer.h.30.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
298
+ "transformer.h.30.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
299
+ "transformer.h.30.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
300
+ "transformer.h.30.ln_1.bias": "pytorch_model-00001-of-00002.bin",
301
+ "transformer.h.30.ln_1.weight": "pytorch_model-00001-of-00002.bin",
302
+ "transformer.h.30.ln_2.bias": "pytorch_model-00001-of-00002.bin",
303
+ "transformer.h.30.ln_2.weight": "pytorch_model-00001-of-00002.bin",
304
+ "transformer.h.30.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
305
+ "transformer.h.30.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
306
+ "transformer.h.30.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
307
+ "transformer.h.30.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
308
+ "transformer.h.31.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
309
+ "transformer.h.31.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
310
+ "transformer.h.31.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
311
+ "transformer.h.31.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
312
+ "transformer.h.31.ln_1.bias": "pytorch_model-00001-of-00002.bin",
313
+ "transformer.h.31.ln_1.weight": "pytorch_model-00001-of-00002.bin",
314
+ "transformer.h.31.ln_2.bias": "pytorch_model-00001-of-00002.bin",
315
+ "transformer.h.31.ln_2.weight": "pytorch_model-00001-of-00002.bin",
316
+ "transformer.h.31.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
317
+ "transformer.h.31.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
318
+ "transformer.h.31.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
319
+ "transformer.h.31.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
320
+ "transformer.h.32.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
321
+ "transformer.h.32.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
322
+ "transformer.h.32.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
323
+ "transformer.h.32.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
324
+ "transformer.h.32.ln_1.bias": "pytorch_model-00001-of-00002.bin",
325
+ "transformer.h.32.ln_1.weight": "pytorch_model-00001-of-00002.bin",
326
+ "transformer.h.32.ln_2.bias": "pytorch_model-00001-of-00002.bin",
327
+ "transformer.h.32.ln_2.weight": "pytorch_model-00001-of-00002.bin",
328
+ "transformer.h.32.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
329
+ "transformer.h.32.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
330
+ "transformer.h.32.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
331
+ "transformer.h.32.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
332
+ "transformer.h.33.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
333
+ "transformer.h.33.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
334
+ "transformer.h.33.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
335
+ "transformer.h.33.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
336
+ "transformer.h.33.ln_1.bias": "pytorch_model-00001-of-00002.bin",
337
+ "transformer.h.33.ln_1.weight": "pytorch_model-00001-of-00002.bin",
338
+ "transformer.h.33.ln_2.bias": "pytorch_model-00001-of-00002.bin",
339
+ "transformer.h.33.ln_2.weight": "pytorch_model-00001-of-00002.bin",
340
+ "transformer.h.33.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
341
+ "transformer.h.33.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
342
+ "transformer.h.33.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
343
+ "transformer.h.33.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
344
+ "transformer.h.34.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
345
+ "transformer.h.34.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
346
+ "transformer.h.34.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
347
+ "transformer.h.34.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
348
+ "transformer.h.34.ln_1.bias": "pytorch_model-00001-of-00002.bin",
349
+ "transformer.h.34.ln_1.weight": "pytorch_model-00001-of-00002.bin",
350
+ "transformer.h.34.ln_2.bias": "pytorch_model-00001-of-00002.bin",
351
+ "transformer.h.34.ln_2.weight": "pytorch_model-00001-of-00002.bin",
352
+ "transformer.h.34.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
353
+ "transformer.h.34.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
354
+ "transformer.h.34.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
355
+ "transformer.h.34.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
356
+ "transformer.h.35.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
357
+ "transformer.h.35.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
358
+ "transformer.h.35.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
359
+ "transformer.h.35.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
360
+ "transformer.h.35.ln_1.bias": "pytorch_model-00001-of-00002.bin",
361
+ "transformer.h.35.ln_1.weight": "pytorch_model-00001-of-00002.bin",
362
+ "transformer.h.35.ln_2.bias": "pytorch_model-00001-of-00002.bin",
363
+ "transformer.h.35.ln_2.weight": "pytorch_model-00001-of-00002.bin",
364
+ "transformer.h.35.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
365
+ "transformer.h.35.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
366
+ "transformer.h.35.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
367
+ "transformer.h.35.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
368
+ "transformer.h.36.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
369
+ "transformer.h.36.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
370
+ "transformer.h.36.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
371
+ "transformer.h.36.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
372
+ "transformer.h.36.ln_1.bias": "pytorch_model-00001-of-00002.bin",
373
+ "transformer.h.36.ln_1.weight": "pytorch_model-00001-of-00002.bin",
374
+ "transformer.h.36.ln_2.bias": "pytorch_model-00001-of-00002.bin",
375
+ "transformer.h.36.ln_2.weight": "pytorch_model-00001-of-00002.bin",
376
+ "transformer.h.36.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
377
+ "transformer.h.36.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
378
+ "transformer.h.36.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
379
+ "transformer.h.36.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
380
+ "transformer.h.37.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
381
+ "transformer.h.37.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
382
+ "transformer.h.37.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
383
+ "transformer.h.37.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
384
+ "transformer.h.37.ln_1.bias": "pytorch_model-00001-of-00002.bin",
385
+ "transformer.h.37.ln_1.weight": "pytorch_model-00001-of-00002.bin",
386
+ "transformer.h.37.ln_2.bias": "pytorch_model-00001-of-00002.bin",
387
+ "transformer.h.37.ln_2.weight": "pytorch_model-00001-of-00002.bin",
388
+ "transformer.h.37.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
389
+ "transformer.h.37.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
390
+ "transformer.h.37.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
391
+ "transformer.h.37.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
392
+ "transformer.h.38.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
393
+ "transformer.h.38.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
394
+ "transformer.h.38.attn.c_proj.bias": "pytorch_model-00002-of-00002.bin",
395
+ "transformer.h.38.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
396
+ "transformer.h.38.ln_1.bias": "pytorch_model-00001-of-00002.bin",
397
+ "transformer.h.38.ln_1.weight": "pytorch_model-00001-of-00002.bin",
398
+ "transformer.h.38.ln_2.bias": "pytorch_model-00002-of-00002.bin",
399
+ "transformer.h.38.ln_2.weight": "pytorch_model-00002-of-00002.bin",
400
+ "transformer.h.38.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
401
+ "transformer.h.38.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
402
+ "transformer.h.38.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
403
+ "transformer.h.38.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
404
+ "transformer.h.39.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
405
+ "transformer.h.39.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
406
+ "transformer.h.39.attn.c_proj.bias": "pytorch_model-00002-of-00002.bin",
407
+ "transformer.h.39.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
408
+ "transformer.h.39.ln_1.bias": "pytorch_model-00002-of-00002.bin",
409
+ "transformer.h.39.ln_1.weight": "pytorch_model-00002-of-00002.bin",
410
+ "transformer.h.39.ln_2.bias": "pytorch_model-00002-of-00002.bin",
411
+ "transformer.h.39.ln_2.weight": "pytorch_model-00002-of-00002.bin",
412
+ "transformer.h.39.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
413
+ "transformer.h.39.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
414
+ "transformer.h.39.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
415
+ "transformer.h.39.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
416
+ "transformer.h.4.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
417
+ "transformer.h.4.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
418
+ "transformer.h.4.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
419
+ "transformer.h.4.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
420
+ "transformer.h.4.ln_1.bias": "pytorch_model-00001-of-00002.bin",
421
+ "transformer.h.4.ln_1.weight": "pytorch_model-00001-of-00002.bin",
422
+ "transformer.h.4.ln_2.bias": "pytorch_model-00001-of-00002.bin",
423
+ "transformer.h.4.ln_2.weight": "pytorch_model-00001-of-00002.bin",
424
+ "transformer.h.4.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
425
+ "transformer.h.4.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
426
+ "transformer.h.4.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
427
+ "transformer.h.4.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
428
+ "transformer.h.40.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
429
+ "transformer.h.40.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
430
+ "transformer.h.40.attn.c_proj.bias": "pytorch_model-00002-of-00002.bin",
431
+ "transformer.h.40.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
432
+ "transformer.h.40.ln_1.bias": "pytorch_model-00002-of-00002.bin",
433
+ "transformer.h.40.ln_1.weight": "pytorch_model-00002-of-00002.bin",
434
+ "transformer.h.40.ln_2.bias": "pytorch_model-00002-of-00002.bin",
435
+ "transformer.h.40.ln_2.weight": "pytorch_model-00002-of-00002.bin",
436
+ "transformer.h.40.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
437
+ "transformer.h.40.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
438
+ "transformer.h.40.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
439
+ "transformer.h.40.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
440
+ "transformer.h.41.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
441
+ "transformer.h.41.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
442
+ "transformer.h.41.attn.c_proj.bias": "pytorch_model-00002-of-00002.bin",
443
+ "transformer.h.41.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
444
+ "transformer.h.41.ln_1.bias": "pytorch_model-00002-of-00002.bin",
445
+ "transformer.h.41.ln_1.weight": "pytorch_model-00002-of-00002.bin",
446
+ "transformer.h.41.ln_2.bias": "pytorch_model-00002-of-00002.bin",
447
+ "transformer.h.41.ln_2.weight": "pytorch_model-00002-of-00002.bin",
448
+ "transformer.h.41.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
449
+ "transformer.h.41.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
450
+ "transformer.h.41.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
451
+ "transformer.h.41.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
452
+ "transformer.h.42.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
453
+ "transformer.h.42.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
454
+ "transformer.h.42.attn.c_proj.bias": "pytorch_model-00002-of-00002.bin",
455
+ "transformer.h.42.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
456
+ "transformer.h.42.ln_1.bias": "pytorch_model-00002-of-00002.bin",
457
+ "transformer.h.42.ln_1.weight": "pytorch_model-00002-of-00002.bin",
458
+ "transformer.h.42.ln_2.bias": "pytorch_model-00002-of-00002.bin",
459
+ "transformer.h.42.ln_2.weight": "pytorch_model-00002-of-00002.bin",
460
+ "transformer.h.42.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
461
+ "transformer.h.42.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
462
+ "transformer.h.42.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
463
+ "transformer.h.42.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
464
+ "transformer.h.43.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
465
+ "transformer.h.43.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
466
+ "transformer.h.43.attn.c_proj.bias": "pytorch_model-00002-of-00002.bin",
467
+ "transformer.h.43.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
468
+ "transformer.h.43.ln_1.bias": "pytorch_model-00002-of-00002.bin",
469
+ "transformer.h.43.ln_1.weight": "pytorch_model-00002-of-00002.bin",
470
+ "transformer.h.43.ln_2.bias": "pytorch_model-00002-of-00002.bin",
471
+ "transformer.h.43.ln_2.weight": "pytorch_model-00002-of-00002.bin",
472
+ "transformer.h.43.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
473
+ "transformer.h.43.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
474
+ "transformer.h.43.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
475
+ "transformer.h.43.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
476
+ "transformer.h.44.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
477
+ "transformer.h.44.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
478
+ "transformer.h.44.attn.c_proj.bias": "pytorch_model-00002-of-00002.bin",
479
+ "transformer.h.44.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
480
+ "transformer.h.44.ln_1.bias": "pytorch_model-00002-of-00002.bin",
481
+ "transformer.h.44.ln_1.weight": "pytorch_model-00002-of-00002.bin",
482
+ "transformer.h.44.ln_2.bias": "pytorch_model-00002-of-00002.bin",
483
+ "transformer.h.44.ln_2.weight": "pytorch_model-00002-of-00002.bin",
484
+ "transformer.h.44.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
485
+ "transformer.h.44.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
486
+ "transformer.h.44.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
487
+ "transformer.h.44.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
488
+ "transformer.h.45.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
489
+ "transformer.h.45.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
490
+ "transformer.h.45.attn.c_proj.bias": "pytorch_model-00002-of-00002.bin",
491
+ "transformer.h.45.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
492
+ "transformer.h.45.ln_1.bias": "pytorch_model-00002-of-00002.bin",
493
+ "transformer.h.45.ln_1.weight": "pytorch_model-00002-of-00002.bin",
494
+ "transformer.h.45.ln_2.bias": "pytorch_model-00002-of-00002.bin",
495
+ "transformer.h.45.ln_2.weight": "pytorch_model-00002-of-00002.bin",
496
+ "transformer.h.45.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
497
+ "transformer.h.45.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
498
+ "transformer.h.45.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
499
+ "transformer.h.45.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
500
+ "transformer.h.46.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
501
+ "transformer.h.46.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
502
+ "transformer.h.46.attn.c_proj.bias": "pytorch_model-00002-of-00002.bin",
503
+ "transformer.h.46.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
504
+ "transformer.h.46.ln_1.bias": "pytorch_model-00002-of-00002.bin",
505
+ "transformer.h.46.ln_1.weight": "pytorch_model-00002-of-00002.bin",
506
+ "transformer.h.46.ln_2.bias": "pytorch_model-00002-of-00002.bin",
507
+ "transformer.h.46.ln_2.weight": "pytorch_model-00002-of-00002.bin",
508
+ "transformer.h.46.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
509
+ "transformer.h.46.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
510
+ "transformer.h.46.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
511
+ "transformer.h.46.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
512
+ "transformer.h.47.attn.c_attn.bias": "pytorch_model-00002-of-00002.bin",
513
+ "transformer.h.47.attn.c_attn.weight": "pytorch_model-00002-of-00002.bin",
514
+ "transformer.h.47.attn.c_proj.bias": "pytorch_model-00002-of-00002.bin",
515
+ "transformer.h.47.attn.c_proj.weight": "pytorch_model-00002-of-00002.bin",
516
+ "transformer.h.47.ln_1.bias": "pytorch_model-00002-of-00002.bin",
517
+ "transformer.h.47.ln_1.weight": "pytorch_model-00002-of-00002.bin",
518
+ "transformer.h.47.ln_2.bias": "pytorch_model-00002-of-00002.bin",
519
+ "transformer.h.47.ln_2.weight": "pytorch_model-00002-of-00002.bin",
520
+ "transformer.h.47.mlp.c_fc.bias": "pytorch_model-00002-of-00002.bin",
521
+ "transformer.h.47.mlp.c_fc.weight": "pytorch_model-00002-of-00002.bin",
522
+ "transformer.h.47.mlp.c_proj.bias": "pytorch_model-00002-of-00002.bin",
523
+ "transformer.h.47.mlp.c_proj.weight": "pytorch_model-00002-of-00002.bin",
524
+ "transformer.h.5.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
525
+ "transformer.h.5.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
526
+ "transformer.h.5.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
527
+ "transformer.h.5.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
528
+ "transformer.h.5.ln_1.bias": "pytorch_model-00001-of-00002.bin",
529
+ "transformer.h.5.ln_1.weight": "pytorch_model-00001-of-00002.bin",
530
+ "transformer.h.5.ln_2.bias": "pytorch_model-00001-of-00002.bin",
531
+ "transformer.h.5.ln_2.weight": "pytorch_model-00001-of-00002.bin",
532
+ "transformer.h.5.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
533
+ "transformer.h.5.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
534
+ "transformer.h.5.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
535
+ "transformer.h.5.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
536
+ "transformer.h.6.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
537
+ "transformer.h.6.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
538
+ "transformer.h.6.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
539
+ "transformer.h.6.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
540
+ "transformer.h.6.ln_1.bias": "pytorch_model-00001-of-00002.bin",
541
+ "transformer.h.6.ln_1.weight": "pytorch_model-00001-of-00002.bin",
542
+ "transformer.h.6.ln_2.bias": "pytorch_model-00001-of-00002.bin",
543
+ "transformer.h.6.ln_2.weight": "pytorch_model-00001-of-00002.bin",
544
+ "transformer.h.6.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
545
+ "transformer.h.6.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
546
+ "transformer.h.6.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
547
+ "transformer.h.6.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
548
+ "transformer.h.7.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
549
+ "transformer.h.7.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
550
+ "transformer.h.7.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
551
+ "transformer.h.7.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
552
+ "transformer.h.7.ln_1.bias": "pytorch_model-00001-of-00002.bin",
553
+ "transformer.h.7.ln_1.weight": "pytorch_model-00001-of-00002.bin",
554
+ "transformer.h.7.ln_2.bias": "pytorch_model-00001-of-00002.bin",
555
+ "transformer.h.7.ln_2.weight": "pytorch_model-00001-of-00002.bin",
556
+ "transformer.h.7.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
557
+ "transformer.h.7.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
558
+ "transformer.h.7.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
559
+ "transformer.h.7.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
560
+ "transformer.h.8.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
561
+ "transformer.h.8.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
562
+ "transformer.h.8.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
563
+ "transformer.h.8.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
564
+ "transformer.h.8.ln_1.bias": "pytorch_model-00001-of-00002.bin",
565
+ "transformer.h.8.ln_1.weight": "pytorch_model-00001-of-00002.bin",
566
+ "transformer.h.8.ln_2.bias": "pytorch_model-00001-of-00002.bin",
567
+ "transformer.h.8.ln_2.weight": "pytorch_model-00001-of-00002.bin",
568
+ "transformer.h.8.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
569
+ "transformer.h.8.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
570
+ "transformer.h.8.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
571
+ "transformer.h.8.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
572
+ "transformer.h.9.attn.c_attn.bias": "pytorch_model-00001-of-00002.bin",
573
+ "transformer.h.9.attn.c_attn.weight": "pytorch_model-00001-of-00002.bin",
574
+ "transformer.h.9.attn.c_proj.bias": "pytorch_model-00001-of-00002.bin",
575
+ "transformer.h.9.attn.c_proj.weight": "pytorch_model-00001-of-00002.bin",
576
+ "transformer.h.9.ln_1.bias": "pytorch_model-00001-of-00002.bin",
577
+ "transformer.h.9.ln_1.weight": "pytorch_model-00001-of-00002.bin",
578
+ "transformer.h.9.ln_2.bias": "pytorch_model-00001-of-00002.bin",
579
+ "transformer.h.9.ln_2.weight": "pytorch_model-00001-of-00002.bin",
580
+ "transformer.h.9.mlp.c_fc.bias": "pytorch_model-00001-of-00002.bin",
581
+ "transformer.h.9.mlp.c_fc.weight": "pytorch_model-00001-of-00002.bin",
582
+ "transformer.h.9.mlp.c_proj.bias": "pytorch_model-00001-of-00002.bin",
583
+ "transformer.h.9.mlp.c_proj.weight": "pytorch_model-00001-of-00002.bin",
584
+ "transformer.ln_f.bias": "pytorch_model-00002-of-00002.bin",
585
+ "transformer.ln_f.weight": "pytorch_model-00002-of-00002.bin",
586
+ "transformer.wpe.weight": "pytorch_model-00001-of-00002.bin",
587
+ "transformer.wte.weight": "pytorch_model-00001-of-00002.bin"
588
+ }
589
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "</s>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "<s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<unk>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<s>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ }
27
+ },
28
+ "auto_map": {"AutoTokenizer":[null,"juman.JumanPreTrainedTokenizerFast"]},
29
+ "bos_token": "<s>",
30
+ "clean_up_tokenization_spaces": true,
31
+ "cls_token": "<s>",
32
+ "eos_token": "</s>",
33
+ "mask_token": "<unk>",
34
+ "model_max_length": 1024,
35
+ "pad_token": "</s>",
36
+ "padding_side": "right",
37
+ "sep_token": "<s>",
38
+ "tokenizer_class": "JumanPreTrainedTokenizerFast",
39
+ "truncation_side": "right",
40
+ "unk_token": "<unk>"
41
+ }
ud.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy
2
+ from transformers import TokenClassificationPipeline
3
+
4
+ class BellmanFordTokenClassificationPipeline(TokenClassificationPipeline):
5
+ def __init__(self,**kwargs):
6
+ super().__init__(**kwargs)
7
+ x=self.model.config.label2id
8
+ y=[k for k in x if k.startswith("B-") or not (k.startswith("I-") or k.endswith("|root") or k.find("|l-")>0 or k.find("|r-")>0)]
9
+ self.transition=numpy.full((len(x),len(x)),numpy.nan)
10
+ for k,v in x.items():
11
+ for j in ["I-"+k[2:]] if k.startswith("B-") else [k]+y if k.startswith("I-") else y:
12
+ self.transition[v,x[j]]=0
13
+ def check_model_type(self,supported_models):
14
+ pass
15
+ def postprocess(self,model_outputs,**kwargs):
16
+ if "logits" not in model_outputs:
17
+ return self.postprocess(model_outputs[0],**kwargs)
18
+ m=model_outputs["logits"][0].numpy()
19
+ e=numpy.exp(m-numpy.max(m,axis=-1,keepdims=True))
20
+ z=e/e.sum(axis=-1,keepdims=True)
21
+ for i in range(m.shape[0]-1,0,-1):
22
+ m[i-1]+=numpy.nanmax(m[i]+self.transition,axis=1)
23
+ k=[numpy.nanargmax(m[0]+self.transition[0])]
24
+ for i in range(1,m.shape[0]):
25
+ k.append(numpy.nanargmax(m[i]+self.transition[k[-1]]))
26
+ w=[{"entity":self.model.config.id2label[j],"start":s,"end":e,"score":z[i,j]} for i,((s,e),j) in enumerate(zip(model_outputs["offset_mapping"][0].tolist(),k)) if s<e]
27
+ if "aggregation_strategy" in kwargs and kwargs["aggregation_strategy"]!="none":
28
+ for i,t in reversed(list(enumerate(w))):
29
+ p=t.pop("entity")
30
+ if p.startswith("I-"):
31
+ w[i-1]["score"]=min(w[i-1]["score"],t["score"])
32
+ w[i-1]["end"]=w.pop(i)["end"]
33
+ elif p.startswith("B-"):
34
+ t["entity_group"]=p[2:]
35
+ else:
36
+ t["entity_group"]=p
37
+ for t in w:
38
+ t["text"]=model_outputs["sentence"][t["start"]:t["end"]]
39
+ return w
40
+
41
+ class UniversalDependenciesCausalPipeline(BellmanFordTokenClassificationPipeline):
42
+ def __init__(self,**kwargs):
43
+ kwargs["aggregation_strategy"]="simple"
44
+ super().__init__(**kwargs)
45
+ x=self.model.config.label2id
46
+ self.root=numpy.full((len(x)),numpy.nan)
47
+ self.left_arc=numpy.full((len(x)),numpy.nan)
48
+ self.right_arc=numpy.full((len(x)),numpy.nan)
49
+ for k,v in x.items():
50
+ if k.endswith("|root"):
51
+ self.root[v]=0
52
+ elif k.find("|l-")>0:
53
+ self.left_arc[v]=0
54
+ elif k.find("|r-")>0:
55
+ self.right_arc[v]=0
56
+ def postprocess(self,model_outputs,**kwargs):
57
+ import torch
58
+ if "logits" not in model_outputs:
59
+ return self.postprocess(model_outputs[0],**kwargs)
60
+ m=model_outputs["logits"][0].numpy()
61
+ for i in range(m.shape[0]-1,0,-1):
62
+ m[i-1]+=numpy.nanmax(m[i]+self.transition,axis=1)
63
+ k=[numpy.nanargmax(m[0]+self.transition[0])]
64
+ for i in range(1,m.shape[0]):
65
+ k.append(numpy.nanargmax(m[i]+self.transition[k[-1]]))
66
+ w=[{"entity":self.model.config.id2label[j],"start":s,"end":e} for i,((s,e),j) in enumerate(zip(model_outputs["offset_mapping"][0].tolist(),k)) if s<e]
67
+ for i,t in reversed(list(enumerate(w))):
68
+ p=t.pop("entity")
69
+ if p.startswith("I-"):
70
+ w[i-1]["end"]=max(w.pop(i)["end"],w[i-1]["end"])
71
+ elif i>0 and w[i-1]["end"]>w[i]["start"]:
72
+ w[i-1]["end"]=max(w.pop(i)["end"],w[i-1]["end"])
73
+ elif p.startswith("B-"):
74
+ t["entity_group"]=p[2:]
75
+ else:
76
+ t["entity_group"]=p
77
+ d=[model_outputs["sentence"][t["start"]:t["end"]] for t in w]
78
+ v=self.tokenizer(d,add_special_tokens=False)
79
+ e=self.model.get_input_embeddings().weight
80
+ m=[]
81
+ for x in v["input_ids"]:
82
+ if x==[]:
83
+ x=[self.tokenizer.unk_token_id]
84
+ m.append(e[x,:].sum(axis=0))
85
+ m.append(e[self.tokenizer.sep_token_id,:])
86
+ m.append(e[self.tokenizer.pad_token_id,:])
87
+ m=torch.stack(m).to(self.device)
88
+ k=list(range(len(d)+1))
89
+ e=[]
90
+ with torch.no_grad():
91
+ for i in range(len(d)):
92
+ e.append(self.model(inputs_embeds=torch.unsqueeze(m[k+list(range(i,len(d)))+[-1]*i,:],0)).logits[0,-len(d):,:])
93
+ e=torch.stack(e).cpu().numpy()
94
+ for i in range(len(d)):
95
+ for j in range(i):
96
+ e[-j-1,-i-1],e[-i-1,-j-1]=e[-i-1,i-j]+self.left_arc,e[-i-1,i-j]+self.right_arc
97
+ e[-i-1,-i-1]=e[-i-1,0]+self.root
98
+ m,p=numpy.nanmax(e,axis=2),numpy.nanargmax(e,axis=2)
99
+ h=self.chu_liu_edmonds(m)
100
+ z=[i for i,j in enumerate(h) if i==j]
101
+ if len(z)>1:
102
+ k,h=z[numpy.nanargmax(m[z,z])],numpy.nanmin(m)-numpy.nanmax(m)
103
+ m[:,z]+=[[0 if j in z and (i!=j or i==k) else h for i in z] for j in range(m.shape[0])]
104
+ h=self.chu_liu_edmonds(m)
105
+ q=[self.model.config.id2label[p[j,i]].split("|") for i,j in enumerate(h)]
106
+ t=model_outputs["sentence"].replace("\n"," ")
107
+ u="# text = "+t+"\n"
108
+ for i,j in enumerate(d):
109
+ u+="\t".join([str(i+1),j,"_",q[i][0],"_","_" if len(q[i])<3 else "|".join(q[i][1:-1]),str(0 if h[i]==i else h[i]+1),"root" if q[i][-1]=="root" else q[i][-1][2:],"_","_" if i+1<len(d) and w[i]["end"]<w[i+1]["start"] else "SpaceAfter=No"])+"\n"
110
+ return u+"\n"
111
+ def chu_liu_edmonds(self,matrix):
112
+ h=numpy.nanargmax(matrix,axis=0)
113
+ x=[-1 if i==j else j for i,j in enumerate(h)]
114
+ for b in [lambda x,i,j:-1 if i not in x else x[i],lambda x,i,j:-1 if j<0 else x[j]]:
115
+ y=[]
116
+ while x!=y:
117
+ y=list(x)
118
+ for i,j in enumerate(x):
119
+ x[i]=b(x,i,j)
120
+ if max(x)<0:
121
+ return h
122
+ y,x=[i for i,j in enumerate(x) if j==max(x)],[i for i,j in enumerate(x) if j<max(x)]
123
+ z=matrix-numpy.nanmax(matrix,axis=0)
124
+ m=numpy.block([[z[x,:][:,x],numpy.nanmax(z[x,:][:,y],axis=1).reshape(len(x),1)],[numpy.nanmax(z[y,:][:,x],axis=0),numpy.nanmax(z[y,y])]])
125
+ k=[j if i==len(x) else x[j] if j<len(x) else y[numpy.nanargmax(z[y,x[i]])] for i,j in enumerate(self.chu_liu_edmonds(m))]
126
+ h=[j if i in y else k[x.index(i)] for i,j in enumerate(h)]
127
+ i=y[numpy.nanargmax(z[x[k[-1]],y] if k[-1]<len(x) else z[y,y])]
128
+ h[i]=x[k[-1]] if k[-1]<len(x) else i
129
+ return h