File size: 4,393 Bytes
3a52f83 a7caa81 641e3b0 a7caa81 3a52f83 a7caa81 3a52f83 a7caa81 3a52f83 a7caa81 3a52f83 a7caa81 3d0cddb a7caa81 24769be a7caa81 3d0cddb a7caa81 68e4882 a7caa81 a91df99 a7caa81 dd79cf8 eb1db6e dd79cf8 24769be a7caa81 3a52f83 a7caa81 3a52f83 a7caa81 3a52f83 a7caa81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
import numpy
from transformers import TokenClassificationPipeline
class UniversalDependenciesPipeline(TokenClassificationPipeline):
def _forward(self,model_inputs):
import torch
v=model_inputs["input_ids"][0].tolist()
with torch.no_grad():
e=self.model(input_ids=torch.tensor([v[0:i]+[self.tokenizer.mask_token_id]+v[i+1:]+[j] for i,j in enumerate(v[1:-1],1)],device=self.device))
return {"logits":e.logits[:,1:-2,:],**model_inputs}
def postprocess(self,model_outputs,**kwargs):
if "logits" not in model_outputs:
return "".join(self.postprocess(x,**kwargs) for x in model_outputs)
e=model_outputs["logits"].numpy()
r=[1 if i==0 else -1 if j.endswith("|root") else 0 for i,j in sorted(self.model.config.id2label.items())]
e+=numpy.where(numpy.add.outer(numpy.identity(e.shape[0]),r)==0,0,-numpy.inf)
g=self.model.config.label2id["X|_|goeswith"]
m,r=numpy.max(e,axis=2),numpy.tri(e.shape[0])
for i in range(e.shape[0]):
for j in range(i+2,e.shape[1]):
r[i,j]=1
if numpy.argmax(e[i,j-1])==g and numpy.argmax(m[:,j-1])==i:
r[i,j]=r[i,j-1]
e[:,:,g]+=numpy.where(r==0,0,-numpy.inf)
m,p=numpy.max(e,axis=2),numpy.argmax(e,axis=2)
h=self.chu_liu_edmonds(m)
z=[i for i,j in enumerate(h) if i==j]
if len(z)>1:
k,h=z[numpy.argmax(m[z,z])],numpy.min(m)-numpy.max(m)
m[:,z]+=[[0 if j in z and (i!=j or i==k) else h for i in z] for j in range(m.shape[0])]
h=self.chu_liu_edmonds(m)
t=model_outputs["sentence"].replace("\n"," ")
v=[(s,e,c if c!=self.tokenizer.unk_token else t[s:e]) for (s,e),c in zip(model_outputs["offset_mapping"][0].tolist(),self.tokenizer.convert_ids_to_tokens(model_outputs["input_ids"][0].tolist())) if s<e]
q=[self.model.config.id2label[p[j,i]].split("|") for i,j in enumerate(h)]
g="aggregation_strategy" in kwargs and kwargs["aggregation_strategy"]!="none"
if g:
for i,j in reversed(list(enumerate(q[1:],1))):
if j[-1]=="goeswith" and set([k[-1] for k in q[h[i]+1:i+1]])=={"goeswith"}:
h=[b if i>b else b-1 for a,b in enumerate(h) if i!=a]
s,e,c=v.pop(i)
v[i-1]=(v[i-1][0],e,v[i-1][2]+c)
q.pop(i)
u="\n"
z={"a":"ア","i":"イ","u":"ウ","e":"エ","o":"オ","k":"ㇰ","s":"ㇱ","t":"ㇳ","n":"ㇴ","h":"ㇷ","m":"ㇺ","r":"ㇽ","p":"ㇷ゚"}
f=-1
for i,(s,e,c) in reversed(list(enumerate(v))):
if t[s]=="\u309a":
s-=1
w,x=[j for j in t[s:e]],""
if i>0 and s<v[i-1][1]:
w[0]=z[c[0]] if c[0] in z else "ッ"
f=max(f,i)
elif f>0:
x="{}-{}\t{}\t_\t_\t_\t_\t_\t_\t_\t{}\n".format(i+1,f+1,t[s:v[f][1]],"_" if f+1<len(v) and v[f][1]<v[f+1][0] else "SpaceAfter=No")
f=-1
if i+1<len(v) and e>v[i+1][0]:
w[-1]=z[c[-1]] if c[-1] in z else "ッ"
if g:
l="".join(w).replace(" ","") if max(w)<"z" else c
l=l.replace("sh","s").replace("ch","c").replace("au","aw").replace("iu","iw").replace("eu","ew").replace("uu","uw").replace("ou","ow").replace("ai","ay").replace("ui","uy").replace("ei","ey").replace("oi","oy")
if q[i][1]=="人称接辞":
if l.find("=")<0:
l="="+l if i>h[i] else l+"="
else:
l="_"
u=x+"\t".join([str(i+1),"".join(w),l,q[i][0],"|".join(q[i][1:-1]),"_",str(0 if h[i]==i else h[i]+1),q[i][-1],"_","_" if i+1<len(v) and e<v[i+1][0] else "SpaceAfter=No"])+"\n"+u
return "# text = "+t+"\n"+u
def chu_liu_edmonds(self,matrix):
h=numpy.argmax(matrix,axis=0)
x=[-1 if i==j else j for i,j in enumerate(h)]
for b in [lambda x,i,j:-1 if i not in x else x[i],lambda x,i,j:-1 if j<0 else x[j]]:
y=[]
while x!=y:
y=list(x)
for i,j in enumerate(x):
x[i]=b(x,i,j)
if max(x)<0:
return h
y,x=[i for i,j in enumerate(x) if j==max(x)],[i for i,j in enumerate(x) if j<max(x)]
z=matrix-numpy.max(matrix,axis=0)
m=numpy.block([[z[x,:][:,x],numpy.max(z[x,:][:,y],axis=1).reshape(len(x),1)],[numpy.max(z[y,:][:,x],axis=0),numpy.max(z[y,y])]])
k=[j if i==len(x) else x[j] if j<len(x) else y[numpy.argmax(z[y,x[i]])] for i,j in enumerate(self.chu_liu_edmonds(m))]
h=[j if i in y else k[x.index(i)] for i,j in enumerate(h)]
i=y[numpy.argmax(z[x[k[-1]],y] if k[-1]<len(x) else z[y,y])]
h[i]=x[k[-1]] if k[-1]<len(x) else i
return h
|