File size: 4,424 Bytes
1f03df7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f24fde8
 
1f03df7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9e034c
 
 
 
 
1f03df7
 
 
 
 
 
 
 
 
 
 
 
 
2ea3689
 
 
1f03df7
 
 
 
 
 
 
 
 
 
 
 
 
 
50f04d6
1f03df7
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
language:
- "ja"
tags:
- "japanese"
- "question-answering"
- "dependency-parsing"
datasets:
- "universal_dependencies"
license: "cc-by-sa-4.0"
pipeline_tag: "question-answering"
widget:
- text: "国語"
  context: "全学年にわたって小学校の国語の教科書に挿し絵が用いられている"
- text: "教科書"
  context: "全学年にわたって小学校の国語の教科書に挿し絵が用いられている"
- text: "の"
  context: "全学年にわたって小学校の国語[MASK]教科書に挿し絵が用いられている"
---

# roberta-base-japanese-aozora-ud-head

## Model Description

This is a RoBERTa model pretrained on 青空文庫 for dependency-parsing (head-detection on long-unit-words) as question-answering, derived from [roberta-base-japanese-aozora-char](https://huggingface.co/KoichiYasuoka/roberta-base-japanese-aozora-char) and [UD_Japanese-GSDLUW](https://github.com/UniversalDependencies/UD_Japanese-GSDLUW). Use [MASK] inside `context` to avoid ambiguity when specifying a multiple-used word as `question`.

## How to Use

```py
from transformers import AutoTokenizer,AutoModelForQuestionAnswering,QuestionAnsweringPipeline
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-japanese-aozora-ud-head")
model=AutoModelForQuestionAnswering.from_pretrained("KoichiYasuoka/roberta-base-japanese-aozora-ud-head")
qap=QuestionAnsweringPipeline(tokenizer=tokenizer,model=model,align_to_words=False)
print(qap(question="国語",context="全学年にわたって小学校の国語の教科書に挿し絵>が用いられている"))
```

or (with [ufal.chu-liu-edmonds](https://pypi.org/project/ufal.chu-liu-edmonds/))

```py
class TransformersUD(object):
  def __init__(self,bert):
    import os
    from transformers import (AutoTokenizer,AutoModelForQuestionAnswering,
      AutoModelForTokenClassification,AutoConfig,TokenClassificationPipeline)
    self.tokenizer=AutoTokenizer.from_pretrained(bert)
    self.model=AutoModelForQuestionAnswering.from_pretrained(bert)
    x=AutoModelForTokenClassification.from_pretrained
    if os.path.isdir(bert):
      d,t=x(os.path.join(bert,"deprel")),x(os.path.join(bert,"tagger"))
    else:
      from transformers.utils import cached_file
      c=AutoConfig.from_pretrained(cached_file(bert,"deprel/config.json"))
      d=x(cached_file(bert,"deprel/pytorch_model.bin"),config=c)
      s=AutoConfig.from_pretrained(cached_file(bert,"tagger/config.json"))
      t=x(cached_file(bert,"tagger/pytorch_model.bin"),config=s)
    self.deprel=TokenClassificationPipeline(model=d,tokenizer=self.tokenizer,
      aggregation_strategy="simple")
    self.tagger=TokenClassificationPipeline(model=t,tokenizer=self.tokenizer)
  def __call__(self,text):
    import numpy,torch,ufal.chu_liu_edmonds
    w=[(t["start"],t["end"],t["entity_group"]) for t in self.deprel(text)]
    z,n={t["start"]:t["entity"].split("|") for t in self.tagger(text)},len(w)
    r,m=[text[s:e] for s,e,p in w],numpy.full((n+1,n+1),numpy.nan)
    v,c=self.tokenizer(r,add_special_tokens=False)["input_ids"],[]
    for i,t in enumerate(v):
      q=[self.tokenizer.cls_token_id]+t+[self.tokenizer.sep_token_id]
      c.append([q]+v[0:i]+[[self.tokenizer.mask_token_id]]+v[i+1:]+[[q[-1]]])
    b=[[len(sum(x[0:j+1],[])) for j in range(len(x))] for x in c]
    with torch.no_grad():
      d=self.model(input_ids=torch.tensor([sum(x,[]) for x in c]),
        token_type_ids=torch.tensor([[0]*x[0]+[1]*(x[-1]-x[0]) for x in b]))
    s,e=d.start_logits.tolist(),d.end_logits.tolist()
    for i in range(n):
      for j in range(n):
        m[i+1,0 if i==j else j+1]=s[i][b[i][j]]+e[i][b[i][j+1]-1]
    h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0]
    if [0 for i in h if i==0]!=[0]:
      i=([p for s,e,p in w]+["root"]).index("root")
      j=i+1 if i<n else numpy.nanargmax(m[:,0])
      m[0:j,0]=m[j+1:,0]=numpy.nan
      h=ufal.chu_liu_edmonds.chu_liu_edmonds(m)[0]
    u="# text = "+text.replace("\n"," ")+"\n"
    for i,(s,e,p) in enumerate(w,1):
      p="root" if h[i]==0 else "dep" if p=="root" else p
      u+="\t".join([str(i),r[i-1],"_",z[s][0][2:],"_","|".join(z[s][1:]),
        str(h[i]),p,"_","_" if i<n and e<w[i][0] else "SpaceAfter=No"])+"\n"
    return u+"\n"

nlp=TransformersUD("KoichiYasuoka/roberta-base-japanese-aozora-ud-head")
print(nlp("全学年にわたって小学校の国語の教科書に挿し絵が用いられている"))
```