KoichiYasuoka commited on
Commit
f86fcd7
·
1 Parent(s): d612aeb

initial release

Browse files
Files changed (6) hide show
  1. README.md +25 -0
  2. config.json +28 -0
  3. pytorch_model.bin +3 -0
  4. special_tokens_map.json +9 -0
  5. tokenizer_config.json +16 -0
  6. vocab.txt +0 -0
README.md ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - "ko"
4
+ tags:
5
+ - "korean"
6
+ - "masked-lm"
7
+ license: "cc-by-sa-4.0"
8
+ pipeline_tag: "fill-mask"
9
+ mask_token: "[MASK]"
10
+ ---
11
+
12
+ # roberta-base-korean-hanja
13
+
14
+ ## Model Description
15
+
16
+ This is a RoBERTa model pre-trained on Korean texts, derived from [klue/roberta-base](https://huggingface.co/klue/roberta-base). Token-embeddings are enhanced to include all 인명용 한자 characters. You can fine-tune `roberta-base-korean-hanja` for downstream tasks, such as [POS-tagging](https://huggingface.co/KoichiYasuoka/roberta-base-korean-upos), [dependency-parsing](https://huggingface.co/KoichiYasuoka/roberta-base-korean-ud-goeswith), and so on.
17
+
18
+ ## How to Use
19
+
20
+ ```py
21
+ from transformers import AutoTokenizer,AutoModelForMaskedLM
22
+ tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-base-korean-hanja")
23
+ model=AutoModelForMaskedLM.from_pretrained("KoichiYasuoka/roberta-base-korean-hanja")
24
+ ```
25
+
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "RobertaForMaskedLM"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "classifier_dropout": null,
8
+ "eos_token_id": 2,
9
+ "gradient_checkpointing": false,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 12,
20
+ "pad_token_id": 1,
21
+ "position_embedding_type": "absolute",
22
+ "tokenizer_class": "BertTokenizer",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.22.1",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 39255
28
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:53f2e80a033d9e3e937c9cc27219e1c66219714ab4e525f6640b997a60c631ca
3
+ size 464992107
special_tokens_map.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[CLS]",
3
+ "cls_token": "[CLS]",
4
+ "eos_token": "[SEP]",
5
+ "mask_token": "[MASK]",
6
+ "pad_token": "[PAD]",
7
+ "sep_token": "[SEP]",
8
+ "unk_token": "[UNK]"
9
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[CLS]",
3
+ "cls_token": "[CLS]",
4
+ "do_basic_tokenize": true,
5
+ "do_lower_case": false,
6
+ "eos_token": "[SEP]",
7
+ "mask_token": "[MASK]",
8
+ "model_max_length": 512,
9
+ "never_split": null,
10
+ "pad_token": "[PAD]",
11
+ "sep_token": "[SEP]",
12
+ "strip_accents": null,
13
+ "tokenize_chinese_chars": true,
14
+ "tokenizer_class": "BertTokenizer",
15
+ "unk_token": "[UNK]"
16
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff