File size: 2,213 Bytes
01c33f9 ee7b737 01c33f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
language:
- en
base_model:
- black-forest-labs/FLUX.1-Kontext-dev
pipeline_tag: image-to-image
library_name: diffusers
tags:
- Style
- lora
- Line
- FluxKontext
- Image-to-Image
---
# Line Style LoRA for FLUX.1 Kontext Model
This repository provides the **Line** style LoRA adapter for the [FLUX.1 Kontext Model](https://huggingface.co/black-forest-labs/FLUX.1-Kontext-dev).
This LoRA is part of a collection of 20+ style LoRAs trained on high-quality paired data generated by GPT-4o from the [OmniConsistency](https://huggingface.co/datasets/showlab/OmniConsistency) dataset.
Contributor: Tian YE & Song FEI, HKUST Guangzhou.
## Style Showcase
Here are some examples of images generated using this style LoRA:






## Inference Example
```python
from diffusers import FluxKontextPipeline
from diffusers.utils import load_image
import torch
# Load the base pipeline
pipeline = FluxKontextPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Kontext-dev",
torch_dtype=torch.bfloat16
).to('cuda')
# Load the LoRA adapter for the Line style directly from the Hub
pipeline.load_lora_weights("Kontext-Style/Line_lora", weight_name="Line_lora_weights.safetensors", adapter_name="lora")
pipeline.set_adapters(["lora"], adapter_weights=[1])
# Load a source image (you can use any image)
image = load_image("https://huggingface.co/datasets/black-forest-labs/kontext-bench/resolve/main/test/images/0003.jpg").resize((1024, 1024))
# Prepare the prompt
# The style_name is used in the prompt and for the output filename.
style_name = "Line"
prompt = f"Turn this image into the Line style."
# Run inference
result_image = pipeline(
image=image,
prompt=prompt,
height=1024,
width=1024,
num_inference_steps=24
).images[0]
# Save the result
output_filename = f"{style_name.replace(' ', '_')}.png"
result_image.save(output_filename)
print(f"Image saved as {output_filename}")
```
Feel free to open an issue or contact us for feedback or collaboration!
|